1. Das, R., RFID Forecasts, Players and Opportunities 2017–2027, IDTechEx, 2017, available: https://www.idtechex.com/research/reports/rfid-forecasts-players-and-opportunities-2017-2027-000546.asp.
2. Brown, D., RFID Implementation, McGraw-Hill, 2007.
3. Sanghera, P., RFID + Study Guide and Practice Exam, Syngress Publishing, Inc., 2007, ISBN 978-0-470-10764-5.
4. Dias, E. M., J. A. Tatto, and D. A. Swiatek, "The National Vehicle Identification System in Brazil as a tool for mobility improvement," Proceedings of the 19th International Conference on Communications, 247-251, Zakynthos Island, Greece, 2015. Google Scholar
5. Chang, Y. and T. K. Shih, "RFID-based intelligent parking management system with indoor positioning and dynamic tracking," 10th International Conference on Ubi-media Computing and Workshops, Pattaya, Thailand, 2017. Google Scholar
6. Moreira, E. C., R. Freitas, A. Morais, and A. S. B. Sombra, "RFID in cashew nut industry," 2014 IEEE Brasil RFID, 31-34, Sao Paulo, Brazil, 2014. Google Scholar
7. Bertolini, M., E. Bottani, G. Ferretti, A. Rizzi, and A. Volpi, "Experimental evaluation of business impacts of RFID in apparel and retail supply chain," International Journal of RF Technologies, Vol. 3, No. 4, 257-282, 2012.
doi:10.3233/RFT-2012-028 Google Scholar
8. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Jonh Wiley & Sons Inc., 2005.
9. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House Inc., 2001.
10. Chen, Z. N., X. Qing, and H. L. Chung, "A universal UHF RFID reader antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1275-1282, May 2009.
doi:10.1109/TMTT.2009.2017290 Google Scholar
11. Chung, H. L., X. Qing, and Z. N. Chen, "A broadband circularly polarized stacked probe-fed patch antenna for UHF RFID applications," International Journal of Antennas and Propagation, Vol. 2007, Article ID 76793, 8 pages, 2007. Google Scholar
12. Dobkin, D., RF in the RFID, 1st Ed., Elsiveir Inc., 2008.
13. Hu, W., G. Wen, D. Inserra, Y. Huang, J. Li, and Z. D. Chen, "A circularly polarized antenna array with gain enhancement for long-range UHF RFID systems," Electronics, Vol. 8, No. 4, Article ID 400, 2019. Google Scholar
14. Ozis, E., A. V. Osipov, and T. F. Eibert, "Metamaterials for microwave radomes and the concept of a metaradome: Review of the literature," International Journal of Antennas and Propagation, Vol. 2017, 13 pages, 2017. Google Scholar
15. Sahu, B., P. Tripathi, and S. P. Singh, "Investigation on cylindrical dielectric resonator antenna with metamaterial superstrate," Wireless Personal Communications, Vol. 84, No. 2, 1151-1163, 2015.
doi:10.1007/s11277-015-2681-y Google Scholar
16. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, 2009.
17. Veselago, V., L. Braginsky, V. Shklover, and C. Hafner, "Negative refractive index materials," Journal of Computational and Theoretical Nanoscience, Vol. 3, No. 2, 1-30, 2006.
doi:10.1166/jctn.2006.3000 Google Scholar
18. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR superstrate for gain and bandwidth enhancement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405 Google Scholar
19. Abdel-Rahman, A. B. and A. A. Ibrahim, "Metamaterial enhances microstrip antenna gain," Microwave & RF, 46-50, August 2015. Google Scholar
20. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901 Google Scholar
21. Abdelrehim, A. A. A. and H. Ghafouri-Shiraz, "Performance improvement of patch antenna using circular split ring resonators and thin wires employing metamaterials lens," Progress In Electromagnetics Research B, Vol. 69, 137-155, 2016.
doi:10.2528/PIERB16051103 Google Scholar
22. Moretti, E. A., R. Anholon, I. S. Rampasso, D. Silva, L. A. Santa-Eulalia, and P. S. A. Ignacio, "Main difficulties during RFID implementation: An exploratory factor analysis approach," Technology Analysis & Strategic Management, Vol. 31, No. 8, 943-956, 2019.
doi:10.1080/09537325.2019.1575351 Google Scholar
23. Moreira, E. C., A. S. B. Sombra, and G. C. Barroso, "An UHF RFID reader antenna made of recycled and reutilized materials from construction debris," IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, Sydney, NSW, 2012. Google Scholar
24. Chung, K. L. and A. Sanagavaparu, "A systematic design method to obtain broadband characteristics for singly-fed electromagnetically coupled patch antennas for circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 12, 3239-3248, 2003.
doi:10.1109/TAP.2003.820949 Google Scholar
25. Costa, F., A. Monorchio, and G. Manara, "An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces," ACES Journal, Vol. 29, No. 12, 960-976, 2014. Google Scholar
26. Gao, X., X. Yu, W. Cao, Y. Jiang, and X. Yu, "Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces," Chinese Physics B, Vol. 25, No. 12, 128102, 2016.
doi:10.1088/1674-1056/25/12/128102 Google Scholar
27. Katiyar, P. R. and W. N. L. B. W. Mahadi, "Comparative analysis of different single cell metamaterial," Australian Journal of Basic and Applied Sciences, Vol. 8, No. 21, 1-7, 2014. Google Scholar
28. Vallecchi, A., F. Capolino, and A. G. Schuchinsky, "2-D isotropic effective negative refractive index metamaterial in planar technology," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 269-271, May 2009.
doi:10.1109/LMWC.2009.2017585 Google Scholar
29. Majumdar, P., Z. Zhao, C. Ji, and R. Liu, "Parametric analysis and modeling of jerusalem cross frequency selective surface," International Journal of Electromagnetics and Applications, Vol. 6, No. 1, 13-21, 2016. Google Scholar
30. Quan, X., S. Zhang, and H. Li, "Metamaterials forge high-directivity antenna," Microwave & RF, Vol. 54, No. 6, 50-56, June 2015. Google Scholar
31. Wang, H., X. Chen, and K. Huang, "An improved approach to determine the branch index for retrieving the constitutive effective parameters of metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 85-96, 2011.
doi:10.1163/156939311793898341 Google Scholar
32. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515 Google Scholar
33. Payandehjoo, K. and R. Patton, "De-embeding the effect of a printed array of probes on planar very-near-field measurements," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-4, Antibes Juan-les-Pins, 2014. Google Scholar
34. Patton, R., "A very-near-field measurement technique to test large antennas in the lab," Microwave Journal, Vol. 57, No. 1, 116-120, January 2014. Google Scholar
35. Silva, S. B. and A. R. Correia, "Minimum activation power of a passive UHF RFID tags: A low cost method," Journal of Aerospace Technology and Management, Vol. 10, Article ID e2418, 2018. Google Scholar