1. Barton, R. J., S. W. Raymond, and W. F. Patrick, "Space applications of low-power active wireless sensor networks and passive RFID tags," Wireless Sensor and Mobile Ad-Hoc Networks, D. Benhaddou and A. Al-Fuqaha (eds.), 97-127, Springer, New York, 2015. Google Scholar
2. Wu, J., J. Liang, X. Wang, C. Chen, X. Zhang, and M. Lu, "Feasibility study of efficient wireless power transmission in satellite interior," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2518-2522, October 2016.
doi:10.1002/mop.30082 Google Scholar
3. Panitz, M. and D. C. Hope, "Characteristics of wireless systems in resonant environments," IEEE Electromagnetic Compatibility Magazine, Vol. 3, No. 3, 64-75, October 2014.
doi:10.1109/MEMC.2014.6924331 Google Scholar
4. Hope, D. C., "Towards a wireless aircraft,", Ph.D. dissertation, University of York, United Kingdom, 2011. Google Scholar
5. Centeno, A. and N. Alford, "Measurement of ZigBee wireless communications in mode-stirred and mode-tuned reverberation chamber," Progress In Electromagnetics Research M, Vol. 18, 171-178, 2011.
doi:10.2528/PIERM11040707 Google Scholar
6. Hope, D., J. Dawson, A. Marvin, M. Panitz, C. Christopoulos, and P. Sewell, "Assessing the performance of ZigBee in a reverberant environment using a mode stirred chamber," IEEE International Symposium on Electromagnetic Compatibility, Detroit, Michigan, August 2008. Google Scholar
7. Panitz, M., C. Christopoulos, P. Sewell, D. Hope, J. Dawson, and A. Marvin, "Modelling wireless communication in highly-multipath low-loss environments," The International Symposium on Electromagnetic Compatibility - EMC Europe, Hamburg, Germany, September 2008. Google Scholar
8. Van't Hof, J. P. and D. D. Stancil, "Wireless sensors in reverberant enclosures: Characterizing a new radio channel," IEEE 62nd Vehicular Technology Conference, Dallas, Texas, September 2005. Google Scholar
9. Hwu, S. U., B. A. Rhodes, B. Kanishka deSilva, C. C. Sham, and J. R. Keiser, "RF exposure analysis for multiple Wi-Fi devices in enclosed environment," IEEE Sensors Applications Symposium, Galveston, Texas, February 2013. Google Scholar
10. Recanatini, R., F. Moglie, and V. Mariani Primiani, "Performance and immunity evaluation of complete WLAN systems in a large reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 5, 806-815, October 2013.
doi:10.1109/TEMC.2013.2239636 Google Scholar
11. Konefal, T., J. F. Dawson, A. C. Denton, T. M. Benson, C. Christopoulos, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Electromagnetic coupling between wires inside a rectangular cavity using multiple-mode-analogous-transmission-line circuit theory," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 273-281, 2001.
doi:10.1109/15.942600 Google Scholar
12. Nanni, A., D. W. P. Thomas, C. Christopoulos, T. Konefal, J. Paul, L. Sandrolini, U. Reggiani, and A. Massarini, "Electromagnetic coupling between wires and loops inside a rectangular cavity using multi-mode transmission line theory," International Symposium on Electromagnetic Compatibility - EMC Europe, Eindhoven, The Neatherlands, September 2004. Google Scholar
13. Chabalko, M. J. and A. P. Sample, "Resonant cavity mode enabled wireless power transfer," Applied Physics Letters, Vol. 105, No. 24, 243902, 2014.
doi:10.1063/1.4904344 Google Scholar
14. Chabalko, M. J., M. Shahmohammadi, and A. P. Sample, "Quasistatic cavity resonance for ubiquitous wireless power transfer," PLoS ONE, Vol. 12, No. 2, e0169045, 2017.
doi:10.1371/journal.pone.0169045 Google Scholar
15. Mei, H., K. A. Thackston, R. A. Bercich, J. G. R. Jefferys, and P. P. Irazoqui, "Cavity resonator wireless power transfer system for freely moving animal experiments," IEEE Transactions on Biomedical Engineering, Vol. 64, No. 4, 775-785, April 2017.
doi:10.1109/TBME.2016.2576469 Google Scholar
16. Korhummel, S., A. Rosen, and Z. Popovic, "Over-moded cavity for multiple-electronic-device wireless charging," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 1074-1079, April 2014.
doi:10.1109/TMTT.2014.2300049 Google Scholar
17. Chabalko, M. J. and A. P. Sample, "Three-dimensional charging via multi-mode resonant cavity enabled wireless power transfer," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6163-6173, November 2015.
doi:10.1109/TPEL.2015.2440914 Google Scholar
18. Wang, X., C. Chen, H. Wong, and M. Lu, "A reconfigurable scheme of wireless power transmission in fully enclosed environments," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2959-2962, 2017.
doi:10.1109/LAWP.2017.2755641 Google Scholar
19. Tsai, L. L., "A numerical solution for the near and far fields of an annular ring of magnetic current," IEEE Transactions on Antennas and Propagation, Vol. 20, No. 5, 569-576, September 1972.
doi:10.1109/TAP.1972.1140283 Google Scholar
20. Tai, C.-T. and P. Rozenfeld, "Different representations of dyadic Green’s functions for a rectangular cavity," IEEE Transactions on Microwave Theory and Techniques, Vol. 24, No. 9, 597-601, September 1976.
doi:10.1109/TMTT.1976.1128914 Google Scholar
21. Lu, M., J. W. Bredow, S. Jung, and S. Tjuatja, "Evaluation of Green's functions of rectangular cavities around resonant frequencies in the method of moments," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 204-208, 2009. Google Scholar
22. Lu, M. and S. Jung, "On the well-posedness of integral equations associated with cavity Green's functions around resonant frequencies," Microwave and Optical Technology Letters, Vol. 51, No. 6, 1476-1481, June 2009.
doi:10.1002/mop.24360 Google Scholar
23. Hill, D. A., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, 7-8, Wiley-IEEE Press, 2009.
doi:10.1002/9780470495056