1. Morrison, C. R., M. W. Siebert, and E. J. Ho, "Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor," IEEE Trans. Magn., Vol. 44, No. 12, 4626-4638, Dec. 2008.
doi:10.1109/TMAG.2008.2002891 Google Scholar
2. Chen, L. and W. Hofmann, "Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2592-2600, Feb. 2012.
doi:10.1109/TIE.2011.2163289 Google Scholar
3. Wei, P., D. Lee, and J. Ahn, "Design and analysis of double stator type bearingless switched reluctance motor," Transactions of the Korean Institute of Electrical Engineers, Vol. 60, No. 4, 746-752, 2011.
doi:10.5370/KIEE.2011.60.4.746 Google Scholar
4. Xue, B., H. Wang, and J. Bao, "Design of novel 12/14 bearingless permanent biased switched reluctance motor," International Conference on Electrical Machines and Systems, 2655-2660, IEEE, Oct. 2014. Google Scholar
5. Cao, X., J. Zhou, C. Liu, and Z. Deng, "Advanced control method for single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement," IEEE Trans. Energy Convers., Vol. 32, No. 4, 1533-1543, Dec. 2017.
doi:10.1109/TEC.2017.2719160 Google Scholar
6. Cao, X. and Z. Deng, "A full-period generating mode for bearingless switched reluctance generators," IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 1072-1076, Mar. 2010.
doi:10.1109/TASC.2010.2041206 Google Scholar
7. Zhang, J., H. Wang, L. Chen, C. Tan, and Y. Wang, "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Trans. Magn., Vol. 54, No. 1, 1-13, Oct. 2017.
doi:10.1109/TMAG.2017.2751546 Google Scholar
8. Wang, H., J. Bao, B. Xue, and J. Liu, "Control of suspending force in novel permanent-magnet-biased bearingless switched reluctance motor," IEEE Trans. Ind. Electron., Vol. 62, No. 7, 4298-4306, Jul. 2015.
doi:10.1109/TIE.2014.2387799 Google Scholar
9. Xiang, Q. W. and L. Feng, "Optimization and analysis of 24/16/8 hybrid excitation double stator bearingless switched reluctance motor," Progress In Electromagnetics Research C, Vol. 89, 191-205, 2019.
doi:10.2528/PIERC18112103 Google Scholar
10. Liu, J., X. Zhang, H. Wang, and J. Bao, "Iron loss characteristic for the novel bearingless switched reluctance motor," 2013 International Conference on Electrical Machines and Systems (ICEMS), 586-592, Oct. 2013. Google Scholar
11. Su, B., X. Sun, L. Chen, Z. Yang, and K. Li, "Thermal modeling and analysis of bearingless permanent magnet synchronous motors," International Journal of Applied Electromagnetics and Mechanics, Vol. 56, No. 1, 115-130, 2017.
doi:10.3233/JAE-170112 Google Scholar
12. Kral, C., A. Haumer, and S. B. Lee, "A practical thermal model for the estimation of permanent magnet and stator winding temperatures," IEEE Trans. Power Electron., Vol. 29, No. 1, 455-464, Jul. 2013.
doi:10.1109/TPEL.2013.2253128 Google Scholar
13. Fang, L., G. Tan, S. Yin, and K. Hu, "Design and temperature field analysis of a novel structure line-start permanent magnetsynchronous motor," International Journal of Applied Electromagnetics and Mechanics, Vol. 51, No. 3, 1-12, Feb. 2016. Google Scholar
14. Kefalas, D. T. and A. Kladas, "Thermal investigation of permanent-magnet synchronous motor for aerospace applications," IEEE Trans. Ind. Electron., Vol. 61, No. 8, 4404-4011, Aug. 2014.
doi:10.1109/TIE.2013.2278521 Google Scholar
15. Arbab, N., W. Wang, C. Lin, J. Hearron, and B. Fahimi, "Thermal modeling and analysis of a double-stator switched reluctance motor," IEEE Trans. Energy Convers., Vol. 30, No. 3, 1209-1217, Sept. 2015.
doi:10.1109/TEC.2015.2424400 Google Scholar
16. Pan, J., F. Meng, and N. Cheung, "Core loss analysis for the planar switched reluctance motor," IEEE Trans. Magn., Vol. 50, No. 2, 813-816, Feb. 2014.
doi:10.1109/TMAG.2013.2285377 Google Scholar
17. Sun, X., Z. Xue, X. Xu, and L. Chen, "Thermal analysis of a segmented rotor switched reluctance motor used as the belt-driven starter/generator for hybrid electric vehicles," Journal of Low Power Electronics, Vol. 12, No. 3, 277-284, Sept. 2016.
doi:10.1166/jolpe.2016.1436 Google Scholar
18. Chen, H., Y. Xu, and H. Iu, "Analysis of temperature distribution in power converter for switched reluctance motor drive," IEEE Trans. Magn., Vol. 48, No. 2, 991-994, Feb. 2012.
doi:10.1109/TMAG.2011.2174968 Google Scholar
19. Toda, H., K. Senda, S. Morimoto, and T. Hiratani, "Influence of various non-oriented electrical steels on motor efficiency and iron loss in switched reluctance motor," IEEE Trans. Magn., Vol. 49, No. 7, 3850-3853, Jul. 2013.
doi:10.1109/TMAG.2013.2242195 Google Scholar
20. Garcia-Amoros, J., P. Andrada, B. Blanque, and M. Marin-Genesca, "Influence of design parameters in the optimization of linear switched reluctance motor under thermal constraints," IEEE Trans. Ind. Electron., Vol. 65, No. 2, 1875-1883, Feb. 2018.
doi:10.1109/TIE.2017.2686361 Google Scholar
21. Li, Y., Research on loss and thermal analysis of switched reluctance motor, Nanjing University of Aeronautics and Astronautics, Nanjing, 2006.