1. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," Journal of the Franklin Institute, Vol. 345, 556-569, 2008.
doi:10.1016/j.jfranklin.2008.01.005 Google Scholar
2. Smith, G. E. and B. G. Mobasseri, "Robust through-the-wall radar image classification using a target-model alignment procedure," IEEE Transactions on Image Processing, Vol. 21, 754-767, 2011.
doi:10.1109/TIP.2011.2166967 Google Scholar
3. Hantscher, S., B. Praher, A. Reisenzahn, and C. G. Diskus, "Comparison of UWB target identification algorithms for through-wall imaging applications," IEEE European Radar Conference, 104-107, 2006. Google Scholar
4. Kidera, S., T. Sakamoto, and T. Sato, "High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars," IEEE Transactions on Antennas and Propagation, Vol. 57, 3520-3529, 2009.
doi:10.1109/TAP.2009.2032337 Google Scholar
5. Dogaru, T. and C. Le, Through-the-wall Small Weapon Detection Based on Polarimetric Radar Techniques, Army Research Lab Adelphi MD Sensors and Electronic Devices Directorate, No. ARLTR-5041, 2009.
6. Mirbach, M. and W. Menzel, "A simple surface estimation algorithm for UWB pulse radars based on trilateration," IEEE International Conference on Ultra-Wideband (ICUWB), 273-277, 2011.
doi:10.1109/ICUWB.2011.6058844 Google Scholar
7. Wu, S., Y. Xu, J. Chen, S. Meng, G. Fang, and H. Yin, "Through-wall shape estimation based on UWB-SP radar," IEEE Geoscience and Remote Sensing Letters, Vol. 10, 1234-1238, 2013.
doi:10.1109/LGRS.2013.2260128 Google Scholar
8. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geoscience and Remote Sensing Letters, Vol. 8, 201-205, 2010.
doi:10.1109/LGRS.2010.2056912 Google Scholar
9. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, 271-283, 2005.
doi:10.1109/TAES.2005.1413761 Google Scholar
10. Hunt, A. R., "Use of a frequency-hopping radar for imaging and motion detection through walls," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, 1402-1408, 2009.
doi:10.1109/TGRS.2009.2016084 Google Scholar
11. Ahmad, F., Y. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 176-179, 2008.
doi:10.1109/LGRS.2008.915742 Google Scholar
12. Hantscher, S., B. Praher, A. Reisenzahn, and C. G. Diskus, "Analysis of imaging radar algorithms for the identification of targets by their surface shape," Int. Conf. on UWB, 2006. Google Scholar
13. Yigit, E., S. Demirci, C. Ozdemir, and A. Kavak, "A synthetic aperture radar-based focusing algorithm for B-scan ground penetrating radar imagery," Microwave and Optical Technology Letters, Vol. 49, 2534-2540, 2007.
doi:10.1002/mop.22724 Google Scholar
14. Ozdemir, C., S. Demirci, and E. Yigit, "Practical algorithms to focus B-scan GPR images: Theory and application to real data," Progress In Electromagnetics Research B, Vol. 6, 109-122, 2008.
doi:10.2528/PIERB08031207 Google Scholar
15. Verma, P. K., A. N. Gaikwad, D. Singh, and M. J. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903 Google Scholar
16. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274 Google Scholar
17. Chandra, R., A. N. Gaikwad, D. Singh, and M. J. Nigam, "An approach to remove the clutter and detect the target for ultra-wideband through-wall imaging," Journal of Geophysics and Engineering, Vol. 5, 412-419, 2008.
doi:10.1088/1742-2132/5/4/005 Google Scholar
18. Singh, D., N. K. Choudhary, K. C. Tiwari, and R. Prasad, "Shape recognition of shallow buried metallic objects at X-band using ANN and image analysis techniques," Progress In Electromagnetics Research B, Vol. 13, 257-273, 2009.
doi:10.2528/PIERB09010301 Google Scholar
19. Ibrahim, K. M., K. F. A. Hussein, and A.-E.-H. A.-E.-A. Ammar, "Land-buried object detection and target-shape recognition in lossy and dispersive soil," Progress In Electromagnetics Research B, Vol. 57, 279-298, 2014.
doi:10.2528/PIERB13111303 Google Scholar
20. Kumar, B., R. Upadhyay, and D. Singh, "Development of an adaptive approach for identification of targets (match box, pocket diary and cigarette box) under the cloth with MMW imaging system," Progress In Electromagnetics Research B, Vol. 77, 37-55, 2017.
doi:10.2528/PIERB17040804 Google Scholar
21. Easyfit by mathwave technologies, [Online]. Available:http://www.mathwave.com/easyfitdistribution-fitting.html.
22. Forbes, C., E. Merran, H. Nicholus, and P. Brian, Statistical Distributions, John Wiley and Sons, 2011.
23. Gonzalez, S. and W. Richards, Digital Image Processing, Dorling Kindersley, 2009.
24. Osowski, S., "Fourier and wavelet descriptors for shape recognition using neural networks — A comparative study," Pattern Recognition, Vol. 35, 1949-1957, 2002.
doi:10.1016/S0031-3203(01)00153-4 Google Scholar
25. Haykin, S., Neural Network a Comprehensive Foundation, Pearson Education, 2005.