Vol. 87
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-03-17
Four-Port Rectangular Monopole Antenna for UWB-MIMO Applications
By
Progress In Electromagnetics Research B, Vol. 87, 19-38, 2020
Abstract
This paper proposes a four-port rectangular monopole antenna for ultra-wideband multiple-input multiple-output (UWB-MIMO) applications. The proposed antenna was designed by using step etching on the ground plane and arrow-shaped slot etching on a radiating patch to enhance bandwidth and improve performances. The homogeneous elements and angular variation techniques were applied to reduce mutual coupling between multiple antenna elements. The structural simulation technique used Computer Simulation Technology (CST) program to analyze the antenna characteristics such as reflection coefficient, group delay, mutual coupling, envelope correlation coefficient, and radiation patterns. The measured results were found to cover a frequency range of 3.1-10.6 GHz for UWB communications. The envelope correlation coefficient for the MIMO system was obtained under 0.001 which is less than the specific parameters of UWB-MIMO antennas. The radiation pattern was bi-directional. Also, the efficiency of the four-port antenna was more than 85.70%.
Citation
Watcharaphon Naktong, and Amnoiy Ruengwaree, "Four-Port Rectangular Monopole Antenna for UWB-MIMO Applications," Progress In Electromagnetics Research B, Vol. 87, 19-38, 2020.
doi:10.2528/PIERB19102902
References

1. Raut, P. and S. Badjate, "MIMO-future wireless communication," International Journal of Innovative Technology and Exploring Engineering (IJITEE), Vol. 2, No. 5, 102-106, 2013.        Google Scholar

2. Wang, Z., L. Liu, J. Cai, Z. Shao, Y. Yang, and X. Zhu, "2.4 GHz/5 GHz wide-band receiver in a wireless communication system based on 4 x 4 MIMO technology," 2012 International Conference on Computational Problem-Solving (ICCP), 182-185, 2012.
doi:10.1109/ICCPS.2012.6384324        Google Scholar

3. Kim, S.-H., J.-Y. Lee, T. T. Nguyen, and J.-H. Jang, "High-performance MIMO antenna with 1-D EBG ground structures for handset application," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1468-1471, 2013.
doi:10.1109/LAWP.2013.2288797        Google Scholar

4. Jiang, X., H. Wang, and T. Jiang, "A low mutual coupling MIMO antenna using EBG structures," 2017 Progress In Electromagnetics Research Symposium | Spring (PIERS), Vol. 12, 660-663, St. Petersburg, Russia, May 22-25, 2017.
doi:10.1109/ICMMT.2016.7762414        Google Scholar

5. Sun, Y., Q. Huang, and X. Shi, "A low mutual coupling MIMO antenna using EBG structures," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 2, 701-703, 2016.        Google Scholar

6. Numan, A.-B., M.-S. Sharawi, A. Steffes, and D.-N. Aloi, "A defected ground structure for isolation enhancement in a printed MIMO antenna system," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2123-2126, 2013.
doi:10.2528/PIERB11092701        Google Scholar

7. Jusoh, M., M. F. B. Jamlos, M. R. Kamarudin, and M. F. B. A. Malek, "A MIMO antenna design challenges for UWB application," Progress In Electromagnetics Research, Vol. 36, 357-371, 2012.
doi:10.1109/ICITEED.2015.7409004        Google Scholar

8. Rakluea, P. and P. Poch, "Development of circular ring antennas for mobile broadband systems," 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), 530-533, 2015.        Google Scholar

9. Najam, A. I., Y. Duroc, and S. Tedjini, "Design and analysis of MIMO antennas for UWB communications," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, 2010.
doi:10.1109/APEMC.2012.6237912        Google Scholar

10. Jusoh, M., M. F. Jamlos, M. F. Malek, M. R. Kamarudin, and H. Harun, "Analysis of radiation efficiency effects on UWB MIMO tree-antenna positioning," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, 897-900, 2012.
doi:10.1109/TAP.2011.2152319        Google Scholar

11. Dao, M.-T., V.-A. Nguyen, Y.-T. Im, S.-O. Park, and G. Yoon, "3D polarized channel modeling and performance comparison of MIMO antenna configurations with different polarizations," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2672-2682, 2011.
doi:10.1049/iet-map.2015.0113        Google Scholar

12. Kumar, R. and N. Pazare, "Compact printed ultra-wideband diversity monopole antenna with slantinverted tree-shaped stub," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1595-1604, 2015.        Google Scholar

13. Naktong, W., S. Kornsing, P. Boonmaitree, P. Dabbung, and A. Ruengwaree, "Study of geometryshaped monopole antenna with step-shaped etching technique on ground plane," 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog (ECTI-CON), 1-4, 2016.
doi:10.1109/ICAEE.2013.6750352        Google Scholar

14. Saad-Bin-Alam, Md., M. S. Ullah, and S. Moury, "Design of a narrowband 2.45 GHz unidirectional microstrip antenna with a reversed `Arrow' shaped slot for fixed RFID tag and reader," 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE), 301-304, 2013.        Google Scholar

15. Thongbor, P., A. Ruengwaree, V. Pirajnanchai, W. Naktong, and N. Fhafhiem, "Rectangular monopole antenna with arrow-shaped slot etching for UWB-MIMO application," 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog (ECTI-CON), 1-4, 2016.
doi:10.1109/ATSIP.2016.7523197        Google Scholar

16. Werfelli, H., K. Tayari, M. Chaoui, M. Lahiani, and H. Ghariani, "Design of rectangular microstrip patch antenna," 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 798-803, 2016.        Google Scholar

17. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

18. Yadav, M. B., B. Singh, and V. S. Melkeri, "Design of rectangular microstrip patch antenna with DGS at 2.45 GHz," 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), Vol. 1, 2017.        Google Scholar

19. Simons, R. N., , Vol. 165, 367-370, Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, 2004.

20. Li, X. F., "Design of a CPW-fed wideband planar monopole antenna with omni-directional pattern improvement," 2015 IEEE International Conference on Communication Problem-Solving (ICCP), 271-273, 2015.        Google Scholar

21. Federal Communications Commission, , Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems: First report and order, FCC 02.V48, April 2002.
doi:10.1109/APS.2006.1710889

22. Jan, J.-Y., J.-C. Kao, Y.-T. Cheng, W.-S. Chen, and H.-M. Chen, "CPW-fed wideband printed planar monopole antenna for ultra-wideband operation," 2006 IEEE Antennas and Propagation Society International Symposium, Vol. 59, No. 7, 1697-1700, 2006.
doi:10.1109/APS.2007.4395590        Google Scholar

23. Yoon, H. K., W. S. Kang, Y.-J. Yoon, and C.-H. Lee, "A CPW-fed flexible monopole antenna for UWB systems," 2007 IEEE Antennas and Propagation Society International Symposium, 701-704, 2007.        Google Scholar

24. Matin, M. A., "Ultra wideband: Current status and future trends," BoD --- Books on Demand, 2012.
doi:10.1109/LAPC.2009.5352587        Google Scholar

25. Manteuffel, D., "MIMO antenna design challenges," 2009 Loughborough Antennas & Propagation Conference, 50-56, 2009.
doi:10.1109/T-VT.1987.24115        Google Scholar

26. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 36, No. 4, 149-172, 1987.        Google Scholar

27. Najam, A. I., Y. Duroc, and S. Tedjini, "A four-element Ultra Wideband (UWB) diversity antenna," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, 2010.
doi:10.1109/ICECS.2011.6122324        Google Scholar

28. Dama, Y., A. S. Hussaini, R. A. Abd-Alhameed, S. M. R. Jones, N. J. McEwan, T. Sadeghpour, and J. Rodriguez, "Envelope correlation formula for (N, N) MIMO antenna array including power losses," 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, 508-511, 2011.
doi:10.1109/LAWP.2015.2412659        Google Scholar

29. Tripathi, S., A. Mohan, and S. Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.        Google Scholar

30. Wu, W., B. Yuan, and A. Wu, "A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures," International Journal of Antennas and Propagation, Vol. 2018, Article ID 8490740, 10 pages, 2018.        Google Scholar

31. Muhammad, B., S. Rashid, A. Hammad, S. Muhammad Farhan, and B. Anthony, "An FSS-based nonplanar quad-element UWB-MIMO antenna system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 987-990, 2016.        Google Scholar

32. Deepika, S., A. Mahesh, and K. Shiban Kishen, "Easily extendable compact planar UWB MIMO antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2328-2331, 2017.
doi:10.1002/mop.30564        Google Scholar

33. Ahmed, I., M. Jan, and S. Raed, "Compact UWB MIMO antenna with pattern diversity and band rejection characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1460-1464, 2017.        Google Scholar

34. Wael, A. E. A. and I. Ahmed, "A compact double-sided MIMO antenna with an improved isolation for UWB applications," AEU --- International Journal of Electronics and Communications, Vol. 82, 7-13, 2017.        Google Scholar

35. Rifaqat, H., S. Mohammad, and S. Atif, "An integrated four-element slot-based MIMO and a UWB sensing antenna system for CR platforms," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 978-983, 2017.
doi:10.1109/TAP.2018.2868725        Google Scholar

36. Mohamed, S., S. Mohamed Sameh, and M. Hassan, "Dual notched band quad-element MIMO antenna with multitone interference suppression for IR-UWB wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 5737-5746, 2018.        Google Scholar

37. Tang, Z., X. Wu, J. Zhan, S. Hu, Z. Xi, and Y. Liu, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," Applied Sciences, Vol. 7, 19856-19865, 2019.
doi:10.3390/app9112371        Google Scholar

38. Fatima, A., S. Rashid, S. Tayyab, B. Muhammad, and S. Farhan, "A compact quad-element UWB-MIMO antenna system with parasitic decoupling mechanism," Applied Sciences, Vol. 9, No. 11, 2371, 2019.
doi:10.1002/mmce.21433        Google Scholar

39. Kunal, S., K. Ashwani, K. Binod, D. Santanu, and K. Sachin, "A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21433, 2019.        Google Scholar

40. Kamel Salah, S. and A. Haythem Hussein, "Planar UWB MIMO-diversity antenna with dual notch characteristics," Progress In Electromagnetics Research, Vol. 93, 119-129, 2019.        Google Scholar