1. Reina, G., D. Johnson, and J. Underwood, "Radar sensing for intelligent vehicles in urban environments," Sensors, Vol. 15, No. 6, 14661-14678, Jun. 2015.
doi:10.3390/s150614661 Google Scholar
2. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 3, 845-860, Mar. 2012.
doi:10.1109/TMTT.2011.2178427 Google Scholar
3. Chipengo, U., P. M. Krenz, and S. Carpenter, "From antenna design to high fidelity, full physics automotive radar sensor corner case simulation," Modelling and Simulation in Engineering, Vol. 2018, Article ID 4239725, 19 pages, 2018. Google Scholar
4. Patole, S. M., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Process. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.
doi:10.1109/MSP.2016.2628914 Google Scholar
5. Friedlander, B., "On the relationship between MIMO and SIMO radars," IEEE Trans. Signal Process., Vol. 57, No. 1, 394-398, Jan. 2009.
doi:10.1109/TSP.2008.2007106 Google Scholar
6. Camps, A., A. Cardama, and D. Infantes, "Synthesis of large low-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1881-1883, Dec. 2001.
doi:10.1109/8.982474 Google Scholar
7. Liu, C.-L. and P. P. Vaidyanathan, "Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors," Digit. Signal Process., Vol. 61, 43-61, Feb. 2017.
doi:10.1016/j.dsp.2016.04.011 Google Scholar
8. Rawnaque, F. S. and J. R. Buck, "Comparing the effect of aperture extension on the peak sidelobe level of sparse arrays," J. Acoust. Soc. Am., Vol. 142, No. 5, EL467-EL472, Nov. 2017.
doi:10.1121/1.5009112 Google Scholar
9. Huang, H., B. Liao, X. Wang, X. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
doi:10.1109/ACCESS.2017.2779171 Google Scholar
10. Zhou, C. and J. Zhou, "Direction-of-Arrival estimation with coarray ESPRIT for coprime array," Sensors, Vol. 7, No. 8, 1779, Aug. 2017.
doi:10.3390/s17081779 Google Scholar
11. Liu, C., P. P. Vaidyanathan, and P. Pal, "Coprime coarray interpolation for DOA estimation via nuclear norm minimization," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2639-2642, 2016.
doi:10.1109/ISCAS.2016.7539135 Google Scholar
12. Abramovich, Y. I., N. K. Spencer, and A. Y. Gorokhov, "Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays," IEEE Trans. Signal Process., Vol. 47, No. 6, 1502-1521, Jun. 1999.
doi:10.1109/78.765119 Google Scholar
13. Forsythe, K. W., D. W. Bliss, and G. S. Fawcett, "Multiple-input multiple-output (MIMO) radar: Performance issues," Conference Record of the Thirty-eighth Asilomar Conference on Signals, Systems and Computers, 2004, Vol. 1, 310-315, 2004.
doi:10.1109/ACSSC.2004.1399143 Google Scholar
14. Chen, C.-Y. and P. P. Vaidyanathan, "Minimum redundancy MIMO radars," 2008 IEEE International Symposium on Circuits and Systems, 45-48, 2008.
doi:10.1109/ISCAS.2008.4541350 Google Scholar
15. Rezer, K., W. Gropengieβer, and A. F. Jacob, "Particle swarm optimization of minimum-redundancy MIMO arrays," 2011 German Microwave Conference, 1-4, 2011. Google Scholar
16. Dong, J., R. Shi, and Y. Guo, "Minimum redundancy MIMO array synthesis with a hybrid method based on cyclic difference sets and ACO," Int. J. Microw. Wirel. Technol., Vol. 9, No. 1, 35-43, Feb. 2017.
doi:10.1017/S1759078715001257 Google Scholar
17. Dong, J., R. Shi, W. Lei, and Y. Guo, "Minimum redundancy MIMO array synthesis by means of cyclic difference sets," International Journal of Antennas and Propagation, Vol. 2013, Article ID 323521, 9 pages, 2013. Google Scholar
18. Qin, S., Y. D. Zhang, and M. G. Amin, "DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar," Digit. Signal Process., Vol. 61, 26-34, Feb. 2017.
doi:10.1016/j.dsp.2016.06.006 Google Scholar
19. Shi, J., G. Hu, X. Zhang, F. Sun, W. Zheng, and Y. Xiao, "Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom," IEEE Sens. J., Vol. 18, No. 3, 1203-1212, Feb. 2018.
doi:10.1109/JSEN.2017.2782746 Google Scholar
20. Yang, M., L. Sun, X. Yuan, and B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray," IEEE Signal Process. Lett., Vol. 25, No. 1, 40-44, Jan. 2018.
doi:10.1109/LSP.2017.2766294 Google Scholar
21. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, Aug. 2010.
doi:10.1109/TSP.2010.2049264 Google Scholar
22. Liu, C. and P. P. Vaidyanathan, "Super nested arrays: Linear sparse arrays with reduced mutual coupling - Part I: Fundamentals," IEEE Trans. Signal Process., Vol. 64, No. 15, 3997-4012, Aug. 2016.
doi:10.1109/TSP.2016.2558159 Google Scholar
23. Yang, M., L. Sun, X. Yuan, and B. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electron. Lett., Vol. 52, No. 25, 2068-2070, 2016.
doi:10.1049/el.2016.3197 Google Scholar
24. Moffet, A., "Minimum-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 172-175, Mar. 1968.
doi:10.1109/TAP.1968.1139138 Google Scholar
25. Hsu, K.-C. and J.-F. Kiang, "DOA estimation using triply primed arrays based on fourth-order statistics," Progress In Electromagnetics Research M, Vol. 67, 55-64, 2018.
doi:10.2528/PIERM18012404 Google Scholar
26. Liu, S., J. Zhao, D. Wu, and H. Cao, "Grade nested array with increased degrees of freedom for quasi-stationary signals," Progress In Electromagnetics Research Letters, Vol. 80, 75-82, 2018.
doi:10.2528/PIERL18100604 Google Scholar
27. BouDaher, E., F. Ahmad, M. G. Amin, and A. Hoorfar, "Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation," Digit. Signal Process., Vol. 61, 3-14, Feb. 2017.
doi:10.1016/j.dsp.2016.06.005 Google Scholar
28. Roberts, W., L. Xu, J. Li, and P. Stoica, "Sparse antenna array design for MIMO active sensing applications," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 846-858, Mar. 2011.
doi:10.1109/TAP.2010.2103550 Google Scholar
29. Chen, Z.-K., F.-G. Yan, X.-L. Qiao, and Y.-N. Zhao, "Sparse antenna array design for MIMO radar using multiobjective diffferential evolution," International Journal of Antennas and Propagation, Vol. 2016, Article ID 1747843, 12 pages, 2016. Google Scholar
30. Ma, Y., C. Miao, Y. Zhao, and W. Wu, "An MIMO radar system based on the sparse-array and its frequency migration calibration method," Sensors, Vol. 19, No. 16, 3580, Jan. 2019.
doi:10.3390/s19163580 Google Scholar
31. BouDaher, E., F. Ahmad, and M. G. Amin, "Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays," IEEE Signal Process. Lett., Vol. 22, No. 10, 1628-1632, Oct. 2015.
doi:10.1109/LSP.2015.2417807 Google Scholar
32. Liu, C. L. and P. P. Vaidyanathan, "Remarks on the spatial smoothing step in coarray MUSIC," IEEE Signal Process. Lett., Vol. 22, No. 9, 1438-1442, Sep. 2015.
doi:10.1109/LSP.2015.2409153 Google Scholar
33. Zheng, W., X. Zhang, and J. Shi, "Sparse extension array geometry for DOA estimation with nested MIMO radar," IEEE Access, Vol. 5, 9580-9586, 2017.
doi:10.1109/ACCESS.2017.2710212 Google Scholar
34. Trees, H. L. V., Detection, Estimation, and Modulation Theory, Optimum Array Processing, John Wiley & Sons, 2004.
35. Patwari, A. and G. R. Reddy, "A conceptual framework for the use of minimum redundancy linear arrays and flexible arrays in future smartphones," International Journal of Antennas and Propagation, Vol. 2018, Article ID 9629837, 12 pages, 2018. Google Scholar
36. Jang, C., F. Hu, F. He, J. Li, and D. Zhu, "Low-redundancy large linear arrays synthesis for aperture synthesis radiometers using particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2179-2188, Jun. 2016.
doi:10.1109/TAP.2016.2543755 Google Scholar
37. Zhu, D., F. Hu, L. Lang, P. Tang, X. Peng, and F. He, "Double difference bases and thinned arrays with two fold redundancy," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7366-7371, Dec. 2017.
doi:10.1109/TAP.2017.2765738 Google Scholar
38. Yang, M., A. M. Haimovich, X. Yuan, L. Sun, and B. Chen, "A unified array geometry composed of multiple identical subarrays with hole-free di®erence coarrays for underdetermined DOA estimation," IEEE Access, Vol. 6, 14238-14254, 2018.
doi:10.1109/ACCESS.2018.2813313 Google Scholar