1. Dennis, C. L. and R. Ivkov, "Physics of heat generation using magnetic nanoparticles for hyperthermia," Int. J. Hyperthermia, Vol. 29, No. 8, 715-729, 2013.
doi:10.3109/02656736.2013.836758 Google Scholar
2. Rosensweig, R. E., "Heating magnetic fluid with alternating magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 252, 370-374, 2002.
doi:10.1016/S0304-8853(02)00706-0 Google Scholar
3. Hergt, R., R. Hiergeist, I. Hilger, W. A. Kaiser, and Y. Lapatnikov, "Maghemite nanoparticles with very high ac-losses for application in rf-magnetic hyperthermia," Journal of Magnetism & Magnetic Materials, Vol. 270, No. 3, 345-357, 2004.
doi:10.1016/j.jmmm.2003.09.001 Google Scholar
4. Hergt, R. and S. Dutz, "Magnetic particle hyperthermia - biophysical limitations of a visionary tumour therapy," Journal of Magnetism and Magnetic Materials, Vol. 311, 187-192, 2006. Google Scholar
5. Glockl, G., R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies, "The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia," Journal of Physics Condensed Matter, Vol. 18, S2935-S2949, 2006.
doi:10.1088/0953-8984/18/38/S27 Google Scholar
6. Wang, X., J. Tang, and L. Shi, "Induction heating of magnetic fluids for hyperthermia treatment," IEEE Transactions on Magnetics, Vol. 46, No. 4, 2010. Google Scholar
7. Dutz, S. and R. Hergt, "Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy," Int. J. Hyperthermia, Vol. 29, No. 8, 790-800, 2013.
doi:10.3109/02656736.2013.822993 Google Scholar
8. Deatsch, A. E. and B. A. Evans, "Heating efficiency in magnetic nanoparticle hyperthermia," Journal of Magnetism and Magnetic Materials, Vol. 354, 163-172, 2014.
doi:10.1016/j.jmmm.2013.11.006 Google Scholar
9. Noh, S., S. Moon, T. Shin, Y. Lim, and J. Cheon, "Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications," Nanotoday, Vol. 13, 61-76, April 2017. Google Scholar
10. Saucier, R., Shape factor modeling and simulation, US Army Research Laboratory, Tech. Rep. ARL-TR-7707, June 2016.
11. Golneshan, A. A. and M. Lahonian, "The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice boltzmann method," Int. J. Hyperthermia, Vol. 27, No. 3, 266-274, May 2011.
doi:10.3109/02656736.2010.519370 Google Scholar
12. Moise, S., E. Cespedes, D. Soukup, J. Byrne, A. E. Haj, and N. Telling, "The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles," Nature Scientific Reports, Vol. 7, 1-11, 2017. Google Scholar
13. Neel, L., "Influence des fluctuations thermiques a laimantation des particules ferromagnetiques," C. R. Acad. Science, Vol. 228, 664-668, 1949. Google Scholar
14. Frenkel, J., The Kinetic Theory of Liquids, Dover Publications, 1955.
15. Delaunay, L., S. Neveu, G. Noyel, and J. Monin, "A new spectrometric method, using a magneto-optical effect, to study magnetic liquids," Journal of Magnetism and Magnetic Materials, Vol. 149, No. 3, 239-249, September 1995.
doi:10.1016/0304-8853(95)00420-3 Google Scholar
16. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.
17. Satopaa, V., J. Albrecht, and D. Irwin, "Finding a “kneedle” in a haystack: Detecting knee points in system behavior," International Conference on Distributed Computing Systems Workshops (ICDCSW), June 2011. Google Scholar
18. Muller, R., S. Dutz, A. Neeb, A. C. B. Catob, and M. Zeisberger, "Magnetic heating effect of nanoparticles with different sizes and size distributions," Journal of Magnetism and Magnetic Materials, Vol. 328, 80-85, 2013.
doi:10.1016/j.jmmm.2012.09.064 Google Scholar
19. Fantechi, E., C. Innocenti, M. Albino, E. Lottini, and C. Sangregorio, "Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles," Journal of Magnetism and Magnetic Materials, Vol. 380, 265-271, 2015. Google Scholar
20. Guibert, C., V. Dupuis, V. Peyre, and J. Fresnais, "Hyperthermia of magnetic nanoparticles: Experimental study of the role of aggregation," J. Phys. Chem. C, Vol. 119, No. 50, 28148-28154, 2015.
doi:10.1021/acs.jpcc.5b07796 Google Scholar
21. Butler, R., "Theoretical single-domain grain size range in magnetite and titanomagnetite," Journal of Geophysical Research Atmospheres, Vol. 80, No. 29, 4049-4058, 1975.
doi:10.1029/JB080i029p04049 Google Scholar
22. Abenojar, E., S. Wickramasinghe, J. Bas-Concepcion, and A. Samia, "Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles," Progress in Natural Science: Materials International, Vol. 26, No. 5, 440-448, October 2016.
doi:10.1016/j.pnsc.2016.09.004 Google Scholar
23. Yadel, C., A. Michel, S. Casale, and J. Fresnais, "Hyperthermia efficiency of magnetic nanoparticles in dense aggregates of cerium oxide/iron oxide nanoparticles," Appl. Sci., Vol. 8, 1241, 2018.
doi:10.3390/app8081241 Google Scholar