Vol. 101
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-17
A Closely Spaced Dual-Band MIMO Patch Antenna with Reduced Mutual Coupling for 4G/5G Applications
By
Progress In Electromagnetics Research C, Vol. 101, 71-80, 2020
Abstract
This study proposes a low-profile dual-band MIMO patch antenna array with improved isolation for 4G-LTE and 5G wireless communications. The proposed antenna design contains two closely-spaced coaxial-fed patch antennas with U-shaped slots to generate dual-band operation at 2.6/3.6 GHz 4G/5G bands. The mutual coupling between MIMO elements can be reduced simultaneously at both operation bands by employing a pair of C-shaped parasitic structures with different sizes between the radiating patches. The results show that the isolation between the antenna ports has been enhanced by about 13 dB and 10 dB at the operation frequencies with the presence of the proposed parasitic structures. The simulation and measurements of the proposed antenna design have been provided to verify the performance of the design.
Citation
Naser Ojaroudi Parchin, Yasir I. A. Al-Yasir, Haleh Jahanbakhsh Basherlou, and Raed A. Abd-Alhameed, "A Closely Spaced Dual-Band MIMO Patch Antenna with Reduced Mutual Coupling for 4G/5G Applications," Progress In Electromagnetics Research C, Vol. 101, 71-80, 2020.
doi:10.2528/PIERC20013001
References

1. Yang, H. H. and Y. Q. S. Quel, "Massive MIMO meet small cell," Springer Briefs in Electrical and Computer Engineering, 2017, DOI 10.1007/978-3-319-43715-6_2.
doi:10.1007/978-3-319-43715-6        Google Scholar

2. Parchin, N. O., et al., "Microwave/RF components for 5G front-end systems," Avid Science, 1-200, 2019.        Google Scholar

3. Balanis, C. A., Antenna Theory, 3rd Ed., Chapters 2, 4, 6, and 7, John Wiley, 2005.

4. Ojaroudi, N. and N. Ghadimi, "Dual-band CPW-fed slot antenna for LTE andWiBro applications," Microw. Opt. Technol. Lett., Vol. 56, 1013-1015, 2014.
doi:10.1002/mop.28254        Google Scholar

5. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, 271-279, 2017.
doi:10.1049/iet-map.2016.0738        Google Scholar

6. Ojaroudi, Y., et al., "Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications," Microw. Opt. Technol. Lett., Vol. 57, 756-759, 2015.
doi:10.1002/mop.28946        Google Scholar

7. Abdulkhaleq, A. M., et al., "Mutual coupling effect on three-way doherty amplifier for green compact mobile communications," EuCAP 2020, Copenhagen, Denmark, 2020.        Google Scholar

8. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346        Google Scholar

9. Ojaroudiparchin, N., et al., "Multi-layer 5G mobile phone antenna for multi-user MIMO communications," Proc. 23rd Telecommun. Forum Telfor (TELFOR), 559-562, Nov. 2015.        Google Scholar

10. Kim, S. and S. Nam, "A compact and wideband linear array antenna with low mutual coupling," IEEE Trans. Antennas Propag., Vol. 67, 5695-5699, 2019.
doi:10.1109/TAP.2019.2922833        Google Scholar

11. Parchin, N. O., et al., "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 9, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112        Google Scholar

12. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, 1648-1655, 2008.
doi:10.1109/TAP.2008.923306        Google Scholar

13. Malmstrom, J., H. Holter, and B. L. G. Jonsson, "On mutual coupling and coupling paths between antennas using the reaction theorem," IEEE Trans. Electromagn. Compat., Vol. 60, 2037-2040, 2018.
doi:10.1109/TEMC.2017.2771512        Google Scholar

14. Alzahed, A. M., S. M. Mikki, and Y. M. M. Antar, "Nonlinear mutual coupling compensation operator design using a novel electromagnetic machine learning paradigm," IEEE Antennas Wireless Propag. Lett., Vol. 18, 861-865, 2019.
doi:10.1109/LAWP.2019.2903787        Google Scholar

15. Nurhayati, G. Hendrantoro, F. Takeshi, and E. Setijad, "Mutual coupling reduction for a UWB coplanar vivaldi array by a truncated and corrugated slot," IEEE Antennas and Wireless Propagation Letter, Vol. 17, 2018.
doi:10.1109/LAWP.2018.2820082        Google Scholar

16. Iqbal, A., O. A. Saraereh, A.W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2799, 2018.
doi:10.1109/ACCESS.2017.2785232        Google Scholar

17. Hameed, K. W. H., et al., "The performance of SLNR beamformers in multi-user MIMO systems," Broad Nets’ 2018, Faro, Portugal, 2018.        Google Scholar

18. Kiani-Kharaji, M., H. R. Hassani, and S. Mohammad-Ali-Nezhad, "Wide scan phased array patch antenna with mutual coupling reduction," IET Microw., Antennas Propag., Vol. 12, 1932-1938, 2018.
doi:10.1049/iet-map.2018.0155        Google Scholar

19. Mazloum, J., et al., "Compact triple-band S-shaped monopole diversity antenna for MIMO applications," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 28, 975-980, 2015.        Google Scholar

20. Basherlou, H. J., et al., "MIMO monopole antenna design with improved isolation for 5G WiFi applications," International Journal of Electrical and Electronic Science, Vol. 7, 1-5, 2019.        Google Scholar

21. CST Microwave Studio, ver. 2018, CST, Framingham, MA, USA, 2018.        Google Scholar

22. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8 GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, March 10–12, 2014.        Google Scholar

23. Wong, K.-L., "Isolation between GSM/DCS and WLAN antennas in a PDA phone," Microw. Opt. Technol. Lett., Vol. 45, 347-352, 2005.
doi:10.1002/mop.20820        Google Scholar

24. Ojaroudi, N., et al., "Quad-band planar inverted-f antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403        Google Scholar

25. Ojaroudi, N., et al., "A new design of triple-band WLAN/WiMAX monopole antenna for multiple-input/multiple-output applications," Microwave and Optical Technology Letters, Vol. 56, 2667-2671, 2014.
doi:10.1002/mop.28675        Google Scholar

26. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 1-16, 2019.
doi:10.1109/JSEN.2019.2925985        Google Scholar

27. Al-Yasir, Y., et al., "Design of very compact combline band-pass filter for 5G applications," LAPC’2018, UK, 2018.        Google Scholar

28. Ojaroudi, N., et al., "Enhanced bandwidth of small square monopole antenna by using inverted U-shaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, 685-690, 2012.        Google Scholar

29. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-Element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.
doi:10.1109/ACCESS.2019.2904647        Google Scholar

30. Parchin, N. O., "Low-profile air-filled antenna for next generation wireless systems," Wireless Personal Communications, Vol. 97, 3293-3300, 2018.
doi:10.1007/s11277-017-4519-2        Google Scholar

31. Ojaroudi Parchin, N., et al., "Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications," 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, Mar. 31–Apr. 5, 2019.        Google Scholar

32. Ojaroudi, M., et al., "Dual band-notch small square monopole antennawith enhanced bandwidth characteristics for UWB applications," ACES J., Vol. 25, 420-426, 2012.        Google Scholar

33. Ojaroudi, N., "Circular microstrip antenna with dual band-stop performance for ultra-wideband systems," Microw. Opt. Technol. Lett., Vol. 56, 2095-2098, 2014.
doi:10.1002/mop.28515        Google Scholar

34. Syrytsin, I., S. Zhang, and G. F. Pedersen, "Performance investigation of a mobile terminal phased array with user effects at 3.5 GHz for LTE advanced," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1847-1850, 2017.
doi:10.1109/LAWP.2016.2570418        Google Scholar

35. Ojaroudiparchin, N., et al., "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," 23rd Telecommunications Forum Telfor (TELFOR), 587-590, Belgrade, Serbia, Nov. 24–26, 2015.        Google Scholar

36. Ojaroudi, N., et al., "Enhanced bandwidth of small square monopole antenna by using inverted U-shaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, 685-690, 2012.        Google Scholar

37. Parchin, N. O., et al., "Dual-band monopole antenna for RFID applications," Future Internet, Vol. 11, 1-10, 2019.        Google Scholar

38. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, 816-822, 2012.        Google Scholar

39. Parchin, N. O., et al., "8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets," IET Conference on Antennas and Propagation, Birmingham, UK, Nov. 2019.        Google Scholar

40. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, London, UK, 2018.        Google Scholar

41. Parchin, N. O., et al., "A radiation-beam switchable antenna array for 5G smartphones," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), Xiamen, China, Dec. 17–20, 2019.        Google Scholar

42. Parchin, N. O., et al., "MM-wave phased array quasi-yagi antenna for the upcoming 5G cellular communications," Applied Sciences, Vol. 9, 1-14, 2019.        Google Scholar

43. Musavand, A., et al., "A compact UWB slot antenna with reconfigurable band-notched function for multimode applications," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 13, No. 1, 975-980, 2016.        Google Scholar

44. Ullah, A., et al., "Coplanar waveguide antenna with defected ground structure for 5G Millimeter wave communications," IEEE MENACOMM’19, Bahrain, 2019.        Google Scholar

45. Ojaroudiparchin, N., et al., "Small-size tapered slot antenna (TSA) design for use in 5G phased array applications," Applied Computational Electromagnetics Society Journal, Vol. 32, 193-202, 2018.        Google Scholar