Vol. 88
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-08-04
Moment Method Treatment of Corrugations with Fins Over Ridges and Stratified Covers Using Dyadic Cavity and Multilayer Green's Functions for Studies of Higher-Order Diffraction Modes
By
Progress In Electromagnetics Research B, Vol. 88, 1-18, 2020
Abstract
There has been a presented modal approach for analyzing the scattering of plane waves that are incident on penetrable gratings with metallic fins lined over both exterior surfaces of each conducting bar to create flanged apertures, which altogether is covered on both sides by multiple dielectric layers. The new degrees of freedom afforded by the special complex geometry offer ways to improve the capabilities of various applications such as beam deflectors, resolution of spectroscopic gratings, grating couplers, and grating pulse compression/decompression, as shall be demonstrated herein for the latter two. All of these entail higher-order diffraction modes, which are advantageously studied by the aforementioned analytical tool. Outcomes of measurements on a fabricated prototype that agree well with expectations from theory are also presented.
Citation
Malcolm Ng Mou Kehn, "Moment Method Treatment of Corrugations with Fins Over Ridges and Stratified Covers Using Dyadic Cavity and Multilayer Green's Functions for Studies of Higher-Order Diffraction Modes," Progress In Electromagnetics Research B, Vol. 88, 1-18, 2020.
doi:10.2528/PIERB20050102
References

1. Flanders, D. C., H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filter for thin film optical waveguides," Appl. Phys. Lett., Vol. 24, 194-196, 1974.
doi:10.1063/1.1655150

2. Schmidt, R. V., D. C. Flanders, C. V. Shank, and R. D. Standley, "Narrow band grating filters for thin film optical waveguides," Appl. Phys. Lett., Vol. 25, 651-652, 1974.
doi:10.1063/1.1655346

3. Tamir, T. and H. L. Bertoni, "Lateral displacement of optical beams at multilayered and periodic structures," J. Opt. Soc. Amer., Vol. 61, 1397-1413, 1971.
doi:10.1364/JOSA.61.001397

4. Harris, J. H., R. K. Winn, and D. G. Dalgoutte, "Theory and design of periodic couplers," Appl. Opt., Vol. 11, 2234-2241, 1972.
doi:10.1364/AO.11.002234

5. Peng, S. T., T. Tamir, and H. L. Bertoni, "Leaky wave analysis of optical periodic couplers," Electron. Lett., Vol. 9, 150-152, 1973.
doi:10.1049/el:19730111

6. Kuhn, L., P. F. Heidrich, and E. G. Lean, "Optical guided wave mode conversion by an acoustic surface wave," Appl. Phys. Lett., Vol. 19, 428-430, 1971.
doi:10.1063/1.1653758

7. Sasaki, H., I. Kushibiki, and N. Chubachi, "Efficient acousto-optic TE-TM mode conversion in ZnO films," Appl. Phys. Lett., Vol. 25, 476-477, 1974.
doi:10.1063/1.1655554

8. Ohmachi, Y., "Acousto-optic TE-TM mode conversion in a thin film of amorphous tellurium dioxide," Electron. Lett., Vol. 9, 539-541, 1973.
doi:10.1049/el:19730397

9. Tseng, S. C. C., A. R. Reisinger, E. A. Geiss, and C. G. Powell, "Mode conversion in magneto-optic waveguides subjected to a periodic permalloy structure," Appl. Phys. Lett., Vol. 24, 265-267, 1974.
doi:10.1063/1.1655177

10. Gia Russo, D. P. and J. H. Harris, "Electro-optic modulation in a thin film waveguide," Appl. Opt., Vol. 10, 2786-2788, 1971.
doi:10.1364/AO.10.2786_1

11. Polky, J. N. and J. H. Harris, "Electro-optic thin film modulator," Appl. Phys. Lett., Vol. 21, 307-309, 1972.
doi:10.1063/1.1654389

12. Tien, P. K., R. J. Martin, R. Wolfe, R. C. LeCraw, and S. L. Blank, "Switching and modulation of light in magneto-optic waveguides of garnet films," Appl. Phys. Lett., Vol. 21, 294-396, 1912.

13. Kuhn, L., M. L. Dakss, P. F. Heidrich, and B. A. Scott, "Deflection of an optical guided wave by a surface acoustic wave," Appl. Phya Lett., Vol. 17, 265-267, 1970.
doi:10.1063/1.1653393

14. Giallorenzi, T. G. and A. F. Milton, "Light deflection in multimode waveguides using the acousto-optic interaction," J. Appl. Phys., Vol. 45, 1762-1774, 1974.
doi:10.1063/1.1663488

15. Wille, D. A. and M. C. Hamilton, "Acoustoaptic deflection in Ta2O5 waveguides," Appl. Phys. Lett., Vol. 24, 159-160, 1974.
doi:10.1063/1.1655134

16. Luukkala, M. and P. Merilainen, "Image scanning by acousto-electro-optic interaction," Elect. Lett., Vol. 10, 80-81, 1974.
doi:10.1049/el:19740062

17. Yamamoto, Y., T. Kamiya, and H. Yanai, "Improved coupled mode analysis of corrugated waveguides and lasers," IEEE Journal of Quantum Electronics, Vol. 14, No. 4, 245-258, Apr. 1978, doi: 10.1109/JQE.1978.1069769.
doi:10.1109/JQE.1978.1069769

18. Nakata, Y. and M. Koshiba, "Boundary-element analysis of plane-wave di®raction from groove-type dielectric and metallic gratings," J. Opt. Soc. Am. A, Vol. 7, 1494-1502, 1990.
doi:10.1364/JOSAA.7.001494

19. Matsumoto, M., "Analysis of radiation properties of channel-waveguide gratings," J. Opt. Soc. Am. B, Vol. 8, 434-442, 1991.
doi:10.1364/JOSAB.8.000434

20. Butler, J. K., W. E. Ferguson, G. A. Evans, P. J. Stabile, and A. Rosen, "A boundary element technique applied to the analysis of waveguides with periodic surface corrugations," IEEE Journal of Quantum Electronics, Vol. 28, No. 7, 1701-1709, Jul. 1992, doi: 10.1109/3.142557.
doi:10.1109/3.142557

21. Park, T. J., H. J. Eom, and K. Yoshitomi, "Analysis of TM scattering from finite rectangular grooves in a conducting plane," J. Opt. Soc. Am. A, Vol. 10, 905-911, 1993.
doi:10.1364/JOSAA.10.000905

22. Nishimoto, M. and H. Ikuno, "Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects," Progress In Electromagnetics Research, Vol. 23, 39-58, 1999.
doi:10.2528/PIER98101602

23. Armeanu, A. M., M. K. Edee, G. Granet, and P. Schiavone, "Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating," Progress In Electromagnetics Research, Vol. 106, 243-261, 2010.
doi:10.2528/PIER10021902

24. Granet, G., L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, "Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution," J. Opt. Soc. Am. A, Vol. 27, 1303-1310, 2010.
doi:10.1364/JOSAA.27.001303

25. Frances Monllor, J., C. Neipp, A. Marquez Ruiz, A. Belendez, and I. Pascual, "Analysis of reflection gratings by means of a matrix method approach," Progress In Electromagnetics Research, Vol. 118, 167-183, 2011.

26. Ng Mou Kehn, M., "Moment method analysis of plane wave scattering from planar corrugated surfaces using parallel-plate cavity Green's functions and derivation of analytic reflection-phase formulas for both polarizations and oblique azimuth planes," Radio Sci., Vol. 47, RS3008, 1-17, Jun. 2012.

27. Ng Mou Kehn, M. and W. Y. Lai, "Modal analysis of gratings with conducting strip-loaded bars and sandwiched between multiple dielectric layers," IEEE Trans. Antennas Propag., Vol. 68, No. 6, 5027-5032, Jun. 2020, doi: 10.1109/TAP.2019.2955214.
doi:10.1109/TAP.2019.2955214

28. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley & Sons, New York, 1989.

29. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.
doi:10.1109/9780470544631

30. Ng Mou Kehn, M., "Modal analysis of substrate integrated waveguides with rectangular via-holes using cavity and multilayer Green's functions," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 10, 2214-2231, Oct. 2014.
doi:10.1109/TMTT.2014.2344626

31. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Chap. 14, Prentice Hall, New Jersey, 1991.

32. Rubin, B. J. and H. L. Bertoni, "Scattering from a periodic array of conducting bars of finite surface resistance," Radio Sci., Vol. 20, No. 4, 827-832, Jul.-Aug., 1985.
doi:10.1029/RS020i004p00827

33. Gedney, S. D. and R. Mittra, "Analysis of the electromagnetic scattering by thick gratings using a combined FEM/MM solution," IEEE Trans. Antennas Propag., Vol. 39, No. 11, 1605-1614, Nov. 1991.
doi:10.1109/8.102776