1. Zhou, L., Y. Pei, and D. Fang, "Dual-band A --- sandwich radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 218-221, 2016.
doi:10.1109/LAWP.2015.2438552 Google Scholar
2. Zhou, L., Y. Pei, R. Zhang, and D. Fang, "Method for design of dual-band flat radome wall structure," American Institute of Aeronautics and Astronautics Journal, Vol. 51, No. 12, 2819-2822, 2013.
doi:10.2514/1.J052428 Google Scholar
3. Zhou, L. C., Y. M. Pei, R. B. Zhang, and D. N. Fang, "A multilayer radome wall structure with passbands having odd times of selected central frequencies," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 16, 2154-2164, 2012.
doi:10.1080/09205071.2012.728521 Google Scholar
4. Zhou, L., Y. Pei, R. Zhang, and D. Fang, "Optimal design for high-temperature broadband radome wall with symmetrical graded porous structure," Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.
doi:10.2528/PIER12030203 Google Scholar
5. Pei, Y., A. Zeng, L. Zhou, R. Zhang, and K. Xu, "Electromagnetic optimal design for dual-band radome wall with alternating layers of staggered composite and Kagome lattice structure," Progress In Electromagnetics Research, Vol. 122, 437-452, 2012.
doi:10.2528/PIER11101906 Google Scholar
6. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005 Google Scholar
7. Vinisha, C. V., P. S. M. Yazeen, V. Joy, R. U. Nair, and P. Mahima, "Multi-layered graded porous radome design for dual-band airborne radar applications," Electronics Letters, Vol. 53, No. 3, 189-191, Feb. 2017.
doi:10.1049/el.2016.3229 Google Scholar
8. Xu, G., S. V. Hum, and G. V. Eleftheriades, "A technique for designing multilayer multistopband frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 780-789, Feb. 2018.
doi:10.1109/TAP.2017.2772089 Google Scholar
9. Xu, G., S. V. Hum, and G. V. Eleftheriades, "Systematic design ofsingle-layer multi-stop-band frequency selective surfaces," Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), 261-262, Jul. 2017. Google Scholar
10. Gao, M., S. M. A. M. H. Abadi, and N. Behdad, "A dual-band inductively coupled miniaturized-element frequency selective surface with higher order bandpass response," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3729-3734, Aug. 2016.
doi:10.1109/TAP.2016.2580181 Google Scholar
11. Liu, N., X. Sheng, C. Zhang, and D. Guo, "Design of dual-band composite radome wall with high angular stability using frequency selective surface," IEEE Access, Vol. 7, 123393-123401, 2019.
doi:10.1109/ACCESS.2019.2937977 Google Scholar
12. Yan, M., J. Wang, H. Ma, M. Feng, Y. Pang, S. Qu, J. Zhang, and L. Zheng, "A tri-band, highly selective, bandpass FSS using cascaded multilayer loop arrays," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2046-2049, May 2016.
doi:10.1109/TAP.2016.2536175 Google Scholar
13. Ichikawa, K., Functionally Graded Materials in the 21st Century: A Workshop on Trends and Forecasts, 235, Springer, 2001, ISBN 978-1-4615-4373-2.
doi:10.1007/978-1-4615-4373-2
14. Mahamood, R. M. and E. T. Akinlabi, Functionally Graded Materials, 103, Springer, 2017, ISBN 978-3-319-53756-6.
doi:10.1007/978-3-319-53756-6
15. Kennedy, J. and W. M. Spears, "Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator," 1998 IEEE International Conference on Evolutionary Computation Proceedings, 78-83, Anchorage, AK, USA, 1998. Google Scholar
16. Sivakoti, K. K., M. Basava, R. V. Balaga, and B. M. Sannidhi, "Design optimization of radar absorbing materials using particle swarm optimization," International Journal of Applied Metaheuristic Computing, Vol. 8, No. 4, 113-132, 2017.
doi:10.4018/IJAMC.2017100107 Google Scholar
17. Roy, S., S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, "Particle swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence," Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015.
doi:10.2528/PIERB14122602 Google Scholar
18. Chiba, H., K. Nishizawa, H. Miyashita, and Y. Konishi, "Optimal design of broadband radome using particle swarm optimization," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 7, No. 4, 343-349, 2012.
doi:10.1002/tee.21738 Google Scholar
19. Lee, K.-W., I.-P. Hong, B.-J. Park, Y.-C. Chung, and J.-G. Yook, "Design of multilayer radome with particle swarm optimization," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 21, No. 7, 744-751, 2010.
doi:10.5515/KJKIEES.2010.21.7.744 Google Scholar
20. Nguyen, T. K., I. G. Lee, O. Kwon, Y. J. Kim, and I. P. Hong, "Metaheuristic optimization techniques for an electromagnetic multilayer radome design," Journal of Electromagnetic Engineering and Science, Vol. 19, 31-36, 2019.
doi:10.26866/jees.2019.19.1.31 Google Scholar
21. Chew, W. C., Waves and Fields in Inhomogeneous Media, 45-53, IEEE Press, 1995.
22. Balanis, C. A., Advanced Engineering Electromagnetics, 1040, John Wiley & Sons, 2012.
23. Pozar, D. M., Microwave Engineering, 39-43, John Wiley & Sons, 1998.
24. Nair, R. U., S. Shashidhara, and R. M. Jha, "Novel inhomogeneous planar layer radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 854-856, 2012.
doi:10.1109/LAWP.2012.2210531 Google Scholar
25. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, 317, Artech House, 2009.
26. Rudge, A. W., K. Milne, A. D. Olver, and P. Knight, The Handbook of Antenna Design, 462-477, IET, 1983.
doi:10.1049/PBEW015G
27. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969 Google Scholar
28. Zhang, Y., Z. Zhao, Z. P. Nie, and Q. H. Liu, "Optimization of graded materials for broadband radome wall with DRR control using a hybrid method," Progress In Electromagnetics Research M, Vol. 43, 193-201, 2015.
doi:10.2528/PIERM15081004 Google Scholar
29. Potton, R. J., "Reciprocity in optics," Reports on Progress in Physics, No. 67, 717-754, 2004.
doi:10.1088/0034-4885/67/5/R03 Google Scholar
30. Vigoureux, J. M. and R. Giust, "Explicit Stokes reciprocity relations for plane stratified media," Optics Communications, No. 176, 1-8, 2000.
doi:10.1016/S0030-4018(00)00469-7 Google Scholar
31. Carminati, R. and M. N. Vesperinas, "Reciprocity of evanescent electromagnetic waves," Journal of the Optical Society of America A, Vol. 15, No. 3, 706-712, 1998.
doi:10.1364/JOSAA.15.000706 Google Scholar