Vol. 105
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-22
Band Notched UWB MIMO/Diversity Antenna Design with Inductance Boosted Compact EBG Structures
By
Progress In Electromagnetics Research C, Vol. 105, 185-202, 2020
Abstract
A triple band notch MIMO/Diversity antenna using Inductance Boosted Compact Electromagnetic Band Gap (IB-CEBG) cells is presented in this paper. For obtaining compactness in the conventional EBG cell, spiral shaped defects are introduced. The proposed antenna obtains triple band notches in WiMAX (3.3-3.6 GHz), WLAN (5-6 GHz), and the X-band satellite communication (7.2-8.4 GHz) bands. IB-CEBG cells exhibits miniaturization of approximately 46% for WiMAX band, 50% for WLAN band and 48% for X-band Satellite communication band, compared to conventional EBG cells. To enhance the isolation among all four compact UWB monopoles, rectangular slots in the ground plane and parasitic decoupling arrangement are utilised. Further, a stepped structure with an angular separation of 90˚ is incorporated with individual monopoles to reduce mutual coupling effects. Stepped structure also helps in the better impedance matching by incrementing the path length. The results show that the magnitude of transmission coefficient is greater than 15 dB in between the ports of proposed antenna elements. Envelope Correlation Coefficient is less than 0.5, which lies in tolerable limits for Ultra-Wide band (UWB) frequency range. It has been noticed that notched frequency is dependent on IB-CEBG cell parameters. The proposed antenna is fabricated using an FR-4 substrate with overall dimensions of 58 x 90 x 1.6 mm3.
Citation
Naveen Jaglan, Priyanka Dalal, Samir Dev Gupta, and Mahmoud Abdelrahman Abdalla, "Band Notched UWB MIMO/Diversity Antenna Design with Inductance Boosted Compact EBG Structures," Progress In Electromagnetics Research C, Vol. 105, 185-202, 2020.
doi:10.2528/PIERC20072402
References

1. Federal Communications Commission "Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems," Tech. Rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA, 2002.        Google Scholar

2. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Printed circular disc monopole antenna for ultra-wideband applications," Electron. Lett., Vol. 40, No. 20, 1246-1248, 2004.        Google Scholar

3. Sarkar, D., K. Sarkar, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 396-399, 2014.        Google Scholar

4. Foudazi, A., H. R. Hassani, and S. M. Ali Nezhad, "Small UWB planar monopole antenna with added GPS/GSM/WLAN bands," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2987-2992, 2012.        Google Scholar

5. Li, W. T., X. W. Shi, and Y. Q. Hei, "Novel planar UWB monopole antenna with triple band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1094-1098, 2009.        Google Scholar

6. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas Wireless Propag. Lett., Vol. 11, 411-414, 2012.        Google Scholar

7. Zhu, F., S. Gao, A. T. S. Ho, A. Al Hameed, et al. "Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 3952-3960, 2013.        Google Scholar

8. Trang, N. D., D. H. Lee, and H. C. Park, "Design and analysis of compact printed triple band-notched UWB antenna," IEEE Antennas Wireless Propag. Lett., Vol. 10, 403-406, 2011.        Google Scholar

9. Tang, M. C., S. Xiao, T. Deng, D. Wang, et al. "Compact UWB antenna with multiple band-notches for WiMAX and WLAN," IEEE Trans. Antennas Propag., Vol. 59, 1372-1376, 2011.        Google Scholar

10. Almalkawi, M. and V. Devabhaktuni, "Ultrawideband antenna with triple band-notched characteristics using closed-loop ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 10, 959-962, 2011.        Google Scholar

11. Mohammadian, N., M. N. Azarmanesh, and S. Soltani, "Compact ultra-wideband slot antenna fed by coplanar waveguide and microstrip line with triple-band-notched frequency function," IET Microw. Antennas Propag., Vol. 4, 1811-1817, 2010.        Google Scholar

12. Deng, J. Y., Y. Z. Yin, S. G. Zhou, and Q. Z. Liu, "Compact ultra-wideband antenna with tri-band notched characteristics," Electron. Lett., Vol. 44, No. 21, 1231-1233, 2008.        Google Scholar

13. Vendik, I. B., A. Rusakov, K. Kanjanasit, J. Hong, et al. "Ultrawideband (UWB) planar antenna with single-dual- and triple-band notched characteristic based onring resonator," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1597-1600, 2017.        Google Scholar

14. Liu, Y., Z. Chen, and S. Gong, "Triple band-notched aperture UWB antenna using hollow-crossloop resonator," Electron. Lett., Vol. 50, 728-730, 2014.        Google Scholar

15. Cai, Y. Z., H. C. Yang, and L. Y. Cai, "Wideband monopole antenna with three band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 13, 607-610, 2014.        Google Scholar

16. Mohammed, H. J., et al., "Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the fire-fly algorithm," IET Microw. Antennas Propag., Vol. 10, 31-37, 2016.        Google Scholar

17. Ali, W. A. E. and R. M. A. Moniem, "Frequency reconfigurable triple band-notched ultra-wideband antenna with compact size," Progress In Electromagnetics Research C, Vol. 73, 37-46, 2017.        Google Scholar

18. Wang, Q. and Y. Zhang, "Design of a compact UWB antenna with triple band-notched characteristics," Int. J. Antennas Propag., Vol. 892765, 1-9, 2014.        Google Scholar

19. Abdelhalim, C. and D. Farid, "A compact planar UWB antenna with triple controllable band notched characteristics," Int. J. Antennas Propag., Vol. 848062, 1-10, 2014.        Google Scholar

20. Peng, L. and C. Ruan, "UWB band-notched monopole antenna design using electromagneticbandgap structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 59, 1074-1081, 2011.        Google Scholar

21. Yazdi, M. and N. Komjani, "Design of a band-notched UWB monopole antenna by means of an EBG structure," IEEE Trans. on Antennas and Wireless Propagation, Vol. 10, 170-173, 2011.        Google Scholar

22. Jensen, M. A. and J. W. Wallace, "A review of antennas and propagation for MIMO wireless communication," IEEE Trans. Antennas Propag., Vol. 52, 2810-2824, 2004.        Google Scholar

23. Song, Y., N. Guo, and R. C. Qiu, "Implementation of UWB MIMO time-reversal radio testbed," IEEE Antennas Wireless Propag. Lett., Vol. 10, 796-799, 2011.        Google Scholar

24. Ben, I. M., L. Talbi, M. Nedil, and K. Hettak, "MIMO-UWB channel characterization within an underground mine gallery," IEEE Trans. Antennas Propag., Vol. 60, 4866-4874, 2012.        Google Scholar

25. Song, Y., T. N. Guo, R. C. Qiu, and M. C. Wicks, "A real time UWB MIMO system with programmable transmit waveforms: Architecture, algorithms and demonstrations," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3933-3940, 2012.        Google Scholar

26. Fletcher, P. N., M. Dean, and A. R. Nix, "Mutual coupling in multi element array antennas and its influence on MIMO channel capacity," Electron. Lett., Vol. 39, No. 2, 342-344, 2003.        Google Scholar

27. Lu, S., T. Hui, and M. Bialkowski, "Optimizing MIMO channel capacities under the influence of antenna mutual coupling," IEEE Antennas Wireless Propag. Lett., Vol. 7, 287-290, 2008.        Google Scholar

28. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1732-1738, 2007.        Google Scholar

29. Kokkinos, T., E. Liakou, and A. P. Feresidis, "Decoupling antenna elements of PIFA arrays on handheld devices," IET Electron. Lett., Vol. 44, No. 25, 1442-1444, 2008.        Google Scholar

30. Karaboikis, M., C. Soras, G. Tsachtsiris, and V. Makios, "Compact dual-printed inverted-F antenna diversity systems for portable wireless devices," IEEE Antennas Wireless Propag. Lett., Vol. 3, No. 1, 9-14, 2004.        Google Scholar

31. Chiau, C. C., X. Chen, and C. G. Parini, "A miniature dielectric-loaded folded half-loop antenna and ground plane effects," IEEE Antennas Wireless Propag. Lett., Vol. 4, No. 1, 459-462, 2005.        Google Scholar

32. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3433-3441, 2007.        Google Scholar

33. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.        Google Scholar

34. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1648-1655, 2008.        Google Scholar

35. See, T. S. P. and Z. N. Chen, "An ultra wideband diversity antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1597-1605, 2009.        Google Scholar

36. Rajagopalan, A., G. Gupta, A. S. Konanur, B. Hughes, et al. "Increasing channel capacity of an ultrawideband MIMO system using vector antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2880-2887, 2007.        Google Scholar

37. Zhang, S., B. K. Lau, A. Sunesson, and S. He, "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4372-4380, 2012.        Google Scholar

38. Gao, P., S. He, X. Wei, Z. Xu, et al. "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 13, 376-379, 2014.        Google Scholar

39. Yoon, H. K., Y. J. Yoon, H. Kim, and C. H. Lee, "Flexible ultra-wideband polarization diversity antenna with band-notch function," IET Microw. Antennas Propag., Vol. 5, No. 12, 1463-1470, 2011.        Google Scholar

40. Lee, J. M., K. B. Kim, H. K. Ryu, and J. M. Woo, "A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices," IEEE Antennas Wireless Propag. Lett., Vol. 11, 990-993, 2012.        Google Scholar

41. Li, J. F., Q. X. Chu, Z. H. Li, and X. X. Xia, "Compact dual band-notched UWB MIMO antenna with high isolation," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4759-4766, 2013.        Google Scholar

42. Chacko, B. P., G. Augustin, and T. A. Denidni, "Uniplanar polarization diversity antenna for wideband systems," IET Microw. Antennas Propag., Vol. 7, No. 10, 851-857, 2013.        Google Scholar

43. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1917-1924, 2015.        Google Scholar

44. Li, J.-F., D.-L. Wu, and Y.-J. Wu, "Dual band-notched UWB MIMO antenna with uniform rejection performance," Progress In Electromagnetics Research M, Vol. 54, 103-111, 2017.        Google Scholar

45. Toktas, A., "G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals," IET Microw. Antennas Propag., Vol. 11, No. 3, 718-725, 2017.        Google Scholar

46. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

47. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and S. Srivastava, "Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structure," Wireless Networks, Vol. 24, No. 2, 383-393, 2016.        Google Scholar

48. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. dissertation, Department of Electrical Engineering, University of California, Los Angeles, CA, 1999.        Google Scholar

49. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.        Google Scholar

50. Jaglan, N., S. D. Gupta, B. K. Kanaujia, S. Srivastava, and E. Thakur, "Triple band notched DGCEBG structures based UWB MIMO/diversity antenna," Progress In Electromagnetics Research C, Vol. 80, 21-37, 2018.        Google Scholar

51. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and S. Srivastava, "Design and development of an efficient EBG structures based band notched UWB circular monopole antenna," Wireless Personal Communication, Vol. 96, No. 2, 5757-5783, Springer, 2017.        Google Scholar

52. Ahmed, O. and A. R. Sebak, "A printed monopole antenna with two steps and a circular slot for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 7, 411-413, 2008.        Google Scholar

53. Naghar, A., et al., "Design of compact wideband multi-band and ultrawideband band pass filters based on coupled half wave resonators with reduced coupling gap," IET Microw. Antennas Propag., Vol. 9, No. 15, 1786-1792, 2015.        Google Scholar

54. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.        Google Scholar

55. Mu, X., W. Jiang, S.-X. Gong, and F.-W. Wang, "Dual-band low profile directional antenna with high impedance surface reflector," Progress In Electromagnetics Research Letters, Vol. 25, 67-75, 2011.        Google Scholar

56. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.        Google Scholar

57. Diallo, A., P. L. Thuc, C. Luxey, R. Staraj, G. Kossiavas, M. Franzen, and P. S. Kildal, "Diversity characterization of optimized two-antenna systems for UMTS handsets," EURASIP Journal on Wireless Communication and Networking, Hindawi Publishing Corporation, 2007.        Google Scholar

58. Srivastava, G. and A. Mohan, "Compact MIMO slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1057-1060, 2015.        Google Scholar

59. Jetti, C. R. and V. R. Nandanavanam, "Trident shape strip loaded dual band notched UWB MIMO antenna for portable device applications," AEU --- International Journal of Electronics and Communications, Vol. 83, 11-21, 2018.        Google Scholar

60. Zhu, J., S. Li, B. Feng, L. Deng, et al. "Compact dual polarized UWB quasi-self-complementary MIMO/diversity antenna with band rejection capability," IEEE Antennas Wireless Propag. Lett., Vol. 15, 905-908, 2016.        Google Scholar

61. Chandel, R. and A. K. Gautam, "Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristics," Electron. Lett., Vol. 52, 336-338, 2016.        Google Scholar

62. Khan, M. S., A. D. Capobianco, S. Asif, A. Iftikhar, et al. "Compact 4 × 4 UWB-MIMO antenna with WLAN band rejected operation," IET Electronic Letters, Vol. 51, No. 14, 1048-1050, 2015.        Google Scholar

63. Kiem, N. K., H. N. B. Phuong, and D. N. Chien, "Design of compact 4 × 4 UWB MIMO antenna with WLAN band rejection," Int. J. Antennas Propag., Vol. 539094, 1-11, 2014.        Google Scholar

64. Irene, G. and A. Rajesh, "A Penta-band reject inside cut koch fractal hexagonal monopole UWB MIMO antenna for portable devices," Progress In Electromagnetics Research C, Vol. 82, 225-235, 2018.        Google Scholar

65. Kang, L. and H. Li, "Compact offset microstrip-fed MIMO antenna for band-notched UWB application," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1754-1757, 2015.        Google Scholar

66. Kumar, S., R. Kumar, R. K. Vishwakarma, and K. Srivastava, "An improved compact MIMO antenna for wireless applications with band-notched characteristics," International Journal of Electronics and Communications, Vol. 90, 20-29, 2018.        Google Scholar

67. Khan, M. S., A. Iftikhar, S. Asif, A.-D. Capobianco, et al. "A compact four elements UWB MIMO antenna with on-demand WLAN rejection," Microwave and Optical Technology Letters, Vol. 58, No. 2, 270-276, 2016.        Google Scholar

68. Yadav, D., M. P. Abegaonkar, S. K. Koul, V. N. Tiwari, and D. Bhatnagar, "Two element bandnotched UWB MIMO antenna with high and uniform isolation," Progress In Electromagnetics Research M, Vol. 63, 119-129, 2018.        Google Scholar

69. Kang, L., H. Li, X.-H. Wang, and X.-W. Shi, "Miniaturized band notched UWB MIMO antenna with high isolation," Microwave and Optical Technology Letters, Vol. 58, No. 2, 878-881, 2016.        Google Scholar

70. Khan, M. S., A. Naqvi, B. Ijaz, M. F. Shafique, et al. "Compact planar UWB MIMO antenna with on-demand WLAN rejection," IET Electronic Letters, Vol. 51, No. 13, 963-964, 2015.        Google Scholar

71. Khan, M. S., A. D. Capobianco, S. Asif, A. Iftikhar, et al. "Compact 4 × 4 UWB-MIMO antenna with WLAN band rejected operation," Electron. Lett., Vol. 51, No. 14, 1048-1050, 2015.        Google Scholar

72. Tao, J. and Q. Feng, "Compact UWB band-notch MIMO antenna with embedded antenna element for improved band notch filtering," Progress In Electromagnetics Research C, Vol. 67, 117-125, 2016.        Google Scholar

73. Kiem, N. K., H. N. B. Phuong, and D. N. Chein, "Design of compact 4 × 4 UWB-MIMO antenna with WLAN band rejection," Int. J. Antennas Propag., 1-11, 2014.        Google Scholar

74. Wu, W., B. Yuan, and A. Wu, "A quad-element UWB MIMO antenna with band-notch and reduced mutual coupling based on EBG structures," Int. J. Antennas Propag., 1-10, 2018.        Google Scholar

75. Raheja, D. K., S. Kumar, and B. K. Kanaujia, "Compact quasi-elliptical-self-complementary four-port super-wideband MIMO antenna with dual band elimination characteristics," AEUInternational Journal of Electronics and Communications, Vol. 114, 153001, 2020.        Google Scholar

76. Srivastava, K., A. Kumar, B. K. Kanaujia, and S. Kumar, "A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 1, 21433, 2019.        Google Scholar