1. Chen, T., H. Xu, Q. Xe, J. Chen, J. Ji, and H. Lu, "Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanisms for magnetic susceptibility enhancement in paleosols," Earth Planet. Sci. Lett., Vol. 240, 790-802, 2005.
doi:10.1016/j.epsl.2005.09.026 Google Scholar
2. Fialova, H., G. Maier, E. Petrovsky, A. Kapieka, T. Boyko, and R. Schloger, "Magnetic properties of soils from sites with different geological and environmental settings," J. Appl. Geophys., Vol. 59, 273-283, 2005.
doi:10.1016/j.jappgeo.2005.10.006 Google Scholar
3. Vatta, L. L., R. D. Sanderson, and K. Koch, "Magnetic nanoparticles: Properties and potential applications," Pure Appl. Chem., Vol. 78, 1793-1801, 2006.
doi:10.1351/pac200678091793 Google Scholar
4. Mohammed, L., H. G. Gomaa, D. Ragab, and J. Zhu, "Magnetic nanoparticles for environmental and biomedical applications: A review," Particuology, Vol. 30, 1-14, 2017.
doi:10.1016/j.partic.2016.06.001 Google Scholar
5. Akbarzadeh, A., M. Samiei, and S. Davaran, "Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine," Nanoscale Res. Lett., Vol. 7, 144, 2012.
doi:10.1186/1556-276X-7-144 Google Scholar
6. Tang, S. C. N. and I. M. C. Lo, "Magnetic nanoparticles: Essential factors for sustainable environmental applications," Water Res., Vol. 47, 2613-2632, 2013.
doi:10.1016/j.watres.2013.02.039 Google Scholar
7. Chudanicova, M. and S. M. Hutchinson, "Magnetic signature of overbank sediment in industrial impacted floodplains identified by data mining methods," Geophys. J. Int., Vol. 207, 1106-1121, 2016.
doi:10.1093/gji/ggw321 Google Scholar
8. Wang, G., F. Ren, J. Chen, Y. Liu, F. Ye, F. Oldfield, W. Zhang, and X. Zhang, "Magnetic evidence of anthropogenic dust deposition in urban soils of Shangai, China," Chem. Erde, Vol. 77, 421-428, 2017.
doi:10.1016/j.chemer.2017.07.007 Google Scholar
9. Picardi, G., et al. "Radar sounding of the subsurface of mars," Science, Vol. 310, 1925-1928, 2008.
doi:10.1126/science.1122165 Google Scholar
10. Pettinelli, E., G. Vannaroni, A. Cereti, A. R. Pisani, F. Paolucci, D. Del Vento, D. Dolfi, S. Riccioli, and F. Bella, "Laboratory investigations into electromagnetic properties of magnetite/silica mixtures as Martian soil simulants," Journal of Geophysical Research, Vol. 110, E04013, 2005.
doi:10.1029/2004JE002375 Google Scholar
11. Von Hippel, A., Dielectric and Waves, 284, Wiley, 1954.
12. Griffiths, D. J., Introduction to Electrodynamics, 4th Ed., 604, Pearson Education Inc., 2013.
13. Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman, "Review of advances in dielectric and electrical conductivity measurements using time domain reflectometry," Vadose Zone J., Vol. 2, 444-475, 2003.
doi:10.2136/vzj2003.4440 Google Scholar
14. Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zone J., Vol. 2, 476-491, 2003.
doi:10.2136/vzj2003.4760 Google Scholar
15. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Electromagnetic parameters of dielectric and magnetic mixtures evaluated by time-domain reflectometry," IEEE Geosci. Remote Sens. Lett., Vol. 5, 730-734, 2008.
doi:10.1109/LGRS.2008.2004504 Google Scholar
16. Dalton, F. N. and M. Th. van Genuchten, "The time-domain reflectometry method for measuring soil water content and salinity," Geoderma, Vol. 38, 237-250, 1986.
doi:10.1016/0016-7061(86)90018-2 Google Scholar
17. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Time domain reflectometry of glass beads/magnetite mixtures: A time domain study," Appl. Phys. Lett., Vol. 86, 224102, 2005.
doi:10.1063/1.1935029 Google Scholar
18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.
19. Polder, D. and J. H. Van Santem, "The effective permeability of mixtures of solids," Physica XII, Vol. 5, 257-271, 1946.
doi:10.1016/S0031-8914(46)80066-1 Google Scholar
20. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosci. Rem. Sens., Vol. 26, 420-429, 1988.
doi:10.1109/36.3045 Google Scholar
21. Birchak, J. P., G. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proc. IEEE, Vol. 62, 93-98, 1974.
doi:10.1109/PROC.1974.9388 Google Scholar
22. Zakri, T., J. P. Laurent, and M. Vauclin, "Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory," J. Physics D, Vol. 31, 1589-1594, 1998.
doi:10.1088/0022-3727/31/13/013 Google Scholar
23. Looyenga, H., "Dielectric constant of homogenous mixtures," Mol. Phys., Vol. 9, 501-511, 1965.
doi:10.1080/00268976500100671 Google Scholar
24. Dube, D. C., "Study of Landau-Lifshitz-Looyenga’s formula for dielectric correlation between powder and bulk," J. Phys. D: Appl. Phys., Vol. 3, 1648-1652, 1970.
doi:10.1088/0022-3727/3/11/313 Google Scholar
25. Leao, T. P., B. D. C. Freire, V. B. Bufon, and F. F. H. Aragon, "Using Time Domain Reflectometry to estimate water content of three soil orders under savanna in Brazil," Geoderma Regional., Vol. 21, e00280, 2020.
doi:10.1016/j.geodrs.2020.e00280 Google Scholar
26. Correa, I. C. S. and A. R. D. Elias, "Minerais pesados dos sedimentos do fundo da enseada de Caraguatatuba, Sao Paulo, Brasil," Pesquisas em Geociˆencias, Vol. 28, 37-47, 2001.
doi:10.22456/1807-9806.20166 Google Scholar
27. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electr. Agricult., Vol. 31, 213-237, 2001.
doi:10.1016/S0168-1699(00)00184-8 Google Scholar
28. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resour. Res., Vol. 16, 574-582, 1980.
doi:10.1029/WR016i003p00574 Google Scholar
29. Topp, G. C. and W. D. Reynolds, "Time domain reflectometry: A seminal technique for measuring mass and energy in soil," Soil Till. Res., Vol. 47, 125-132, 1998.
doi:10.1016/S0167-1987(98)00083-X Google Scholar
30. Robinson, D. A. and S. P. Friedman, "A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials," J. Geophys. Res., Vol. 108, 2076, 2003. Google Scholar
31. Robinson, P., R. J. Harrison, S. A. McEnroe, and R. B. Hargraves, "Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization," Nature, Vol. 418, 517-520, 2002.
doi:10.1038/nature00942 Google Scholar
32. Ursula, S., L. Dominique, M. Burchard, and R. Engelmann, "The titanomagnetite-ilmenite equilibrium: New experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks," J. Petrol., Vol. 49, 1161-1185, 2008.
doi:10.1093/petrology/egn021 Google Scholar
33. Van Dam, R. L., J. M. H. Hendrickx, N. J. Cassidy, R. E. North, M. Dogan, and B. Borchers, "Effects of magnetite on high-frequency ground penetrating radar," Geophysics, Vol. 78, H1-H11, 2013.
doi:10.1190/geo2012-0266.1 Google Scholar
34. Iwauchi, K., Y. Kital, and N. Koizumil, "Magnetic and dielectric properties of Fe3O4," J. Phys. Soc. Jpn., Vol. 49, 1328-1335, 1980.
doi:10.1143/JPSJ.49.1328 Google Scholar
35. Hotta, M., M. Hayashi, A. Nishikata, and K. Nagata, "Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5GHz," ISIJ International, Vol. 49, 1443-1448, 2009.
doi:10.2355/isijinternational.49.1443 Google Scholar
36. Robinson, D. A., J. P. Bell, and C. H. Batchelor, "Influence of iron minerals on the determination of soil water content using dielectric techniques," J. Hydrol., Vol. 161, 169-180, 1994.
doi:10.1016/0022-1694(94)90127-9 Google Scholar
37. Cassidy, N. J., "Frequency-dependent attenuation and velocity characteristics of nano-to-micro scale, lossy, magnetite-rich materials," Near Surf. Geophys., Vol. 6, 341-354, 2008.
doi:10.3997/1873-0604.2008023 Google Scholar
38. Fannin, P. C., C. N. Marin, I. Malaescu, and N. Stefu, "Microwave dielectric properties of magnetite colloidal particles in magnetic fluids," J. Phys.: Condens. Matter, Vol. 19, 036104, 2007.
doi:10.1088/0953-8984/19/3/036104 Google Scholar
39. Schrettle, F., S. Krohns, P. Lunkenheimer, V. A. M. Brabers, and A. Loidl, "Relaxor ferroelectricity and the freezing of short-range polar order in magnetite," Phys. Rev. B, Vol. 83, 195109, 2011.
doi:10.1103/PhysRevB.83.195109 Google Scholar
40. Angst, M., S. Adiga, S. Gorfman, M. Ziolkowski, J. Strempfer, C. Grams, M. Pietsch, and J. Hemberger, "Intrinsic ferroelectricity in charge-ordered magnetite," Crystals, Vol. 9, No. 11, 546, 2019.
doi:10.3390/cryst9110546 Google Scholar