Vol. 106
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-12
Compact Modified Hexagonal Spiral Resonator Based Tri-Band Patch Antenna with Octagonal Slot for Wi-Fi/WLAN Applications
By
Progress In Electromagnetics Research C, Vol. 106, 77-87, 2020
Abstract
In this paper, a compact modified hexagonal spiral resonator-based tri-band patch antenna with an octagonal slot is presented for Wi-Fi/WLAN applications. The proposed antenna is designed on a low-cost FR4 substrate with a dielectric constant of εr=4.4 and loss tangent δ=0.02. The tri-band operations have been achieved by the a Modified Hexagonal Complementary Spiral Resonator (MHCSR) and an Octagonal slot. The loading of the MHCSR at the bottom of the substrate is to cover the 900MHz (IEEE 802.11ah) band, and an Octagonal slot on top of the 5 GHz (IEEE 802.11a/h/j/n/ac/ax) rectangle patch is to cover the 2.4 GHz (IEEE 802.11b/g/n/ax)band. The prototype of the proposed antenna is fabricated and tested to validate the simulation results. The measured impedance bandwidth is 105 MHz at 900 MHz, 160 MHz at 2.4 GHz, 18 0MHz at 5 GHz. The designed antenna has a compact size with overall dimensions of 0.054λ0 x 0.066 λ0 x 0.0048 λ0 (18 x 22 x 1.6 mm3). The 82.2% reduction in size has been accomplished as compared to a conventional patch antenna at 900MHz (lower resonance frequency). The waveguide setup method has been used to validate a negative permittivity property of the MHCSR. The parametric analysis of the proposed antenna had been carried out using the Ansoft HFSS19 software.
Citation
Pitchai Rajalakshmi Nagarajan Gunavathi , "Compact Modified Hexagonal Spiral Resonator Based Tri-Band Patch Antenna with Octagonal Slot for Wi-Fi/WLAN Applications," Progress In Electromagnetics Research C, Vol. 106, 77-87, 2020.
doi:10.2528/PIERC20081803
http://www.jpier.org/PIERC/pier.php?paper=20081803
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1st Ed., Wiley-IEEE Press, Hoboken, NJ, ISBN-10: 0471669857, 2006.

2. Marque's, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley, Hoboken, NJ, ISBN: 978-0-471-74582-2, 2007.
doi:10.1002/9780470191736

3. Huang, C. Y. and Yu. En-Zo, "A slot-monopole antenna for dual-band WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 500-502, 2011.
doi:10.1109/LAWP.2011.2156755

4. Raj, R. K., M. Joseph, C. K. Aanandan, K. Vasudevan, and P. Mohanan, "A new compact microstrip-fed dual-band coplanar antenna for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3755-3762, 2006.
doi:10.1109/TAP.2006.886505

5. Malik, J., A. Patnaik, and M. V. Kartikeyan, "A compact dual-band antenna with omnidirectional radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 503-506, 2015.
doi:10.1109/LAWP.2014.2370651

6. Chakraborty, U., A. Kundu, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact dualband microstrip antenna for IEEE 802.11a WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 407-410, 2014.
doi:10.1109/LAWP.2014.2307005

7. Peng, L. and C.-L. Ruan, "A microstrip fed Patch antenna with two parasitic invert L stubs for dual-band WLAN applications," Wireless Personal Communications, Vol. 57, 727-734, 2011.
doi:10.1007/s11277-009-9873-2

8. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," International Journal of Electronics and Communications (AEU), Vol. 109, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003

9. Varamini, G., A. Keshtkar, and M. Naser-Moghadasi, "Miniaturization of a microstrip loop antenna for wireless based on metamaterial metasurface," International Journal of Electronics and Communications (AEU), Vol. 83, 32-39, 2018.
doi:10.1016/j.aeue.2017.08.024

10. Pirooj, A., M. Naser-Moghadasi, and F. B. Zarrabi, "Design of compact slot antenna based on split ring resonator for 2.45/5 GHz WLAN applications with circular polarization," Microwave and Optical Technology Letter, Vol. 58, No. 1, 12-16, 2016.
doi:10.1002/mop.29484

11. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarization," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 891-901, 2017.
doi:10.1017/S1759078716000726

12. Hrideshkumarverma, R., S. Meena, M. Kumar, and S. P. Singh, "A low RCS compact circularly polarized dual band slot antenna loaded with SRR and CSRR for satellite applications," International Journal of Electronics, 2020.

13. Rajalakshmi, P. and N. Gunavathi, "Gain enhancement of cross shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401

14. Rajalakshmi, P. and N. Gunavathi, "Compact complementary folded triangle split ring resonator triband mobile handset planar antenna for voice and Wi-Fi applications," Progress in Electromagnetics Research Letters, Vol. 91, 253-264, 2019.
doi:10.2528/PIERC19021806

15. Gupta, A. and R. K. Chaudhary, "A compact dual-band short ended metamaterial antenna with extended bandwidth," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 5, 435-441, 2016.
doi:10.1002/mmce.20980

16. Kukreja, J., D. K. Choudhary, and R. K. Chaudhary, "CPW fed miniaturized dual-band short ended metamaterial antenna using modified split ring resonator for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 8, 1-7, 2017.
doi:10.1002/mmce.21123

17. Gunavathi, N. and D. Sriram Kumar, "CPW-fed monopole antenna with reduced radiation hazards towards human head using metallic thin-wire mesh for 802.11ac applications," Microwave and Optical Technology Letters (MOTL), Vol. 57, No. 11, 2684-2687, 2015.
doi:10.1002/mop.29411

18. Gunavathi, N. and D. Sriram Kumar, "Miniaturized unilateral coplanar waveguide-fed asymmetric planar antenna with reduced radiation hazards for 802.11ac applications," Microwave and Optical Technology Letters (MOTL), Vol. 58, No. 2, 338-343, 2015.

19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 2016.

20. Chen, H. J., et al., "Experimental retrieval of the effective parameters of metamaterial based on a waveguide method," Optics Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944

21. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 2002.
doi:10.1103/PhysRevB.65.195104