1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1st Ed., Wiley-IEEE Press, 2006.
2. Marque's, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley, 2007.
doi:10.1002/9780470191736
3. Huang, C. Y. and Yu. En-Zo, "A slot-monopole antenna for dual-band WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 500-502, 2011.
doi:10.1109/LAWP.2011.2156755 Google Scholar
4. Raj, R. K., M. Joseph, C. K. Aanandan, K. Vasudevan, and P. Mohanan, "A new compact microstrip-fed dual-band coplanar antenna for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3755-3762, 2006.
doi:10.1109/TAP.2006.886505 Google Scholar
5. Malik, J., A. Patnaik, and M. V. Kartikeyan, "A compact dual-band antenna with omnidirectional radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 503-506, 2015.
doi:10.1109/LAWP.2014.2370651 Google Scholar
6. Chakraborty, U., A. Kundu, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact dualband microstrip antenna for IEEE 802.11a WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 407-410, 2014.
doi:10.1109/LAWP.2014.2307005 Google Scholar
7. Peng, L. and C.-L. Ruan, "A microstrip fed Patch antenna with two parasitic invert L stubs for dual-band WLAN applications," Wireless Personal Communications, Vol. 57, 727-734, 2011.
doi:10.1007/s11277-009-9873-2 Google Scholar
8. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," International Journal of Electronics and Communications (AEU), Vol. 109, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003 Google Scholar
9. Varamini, G., A. Keshtkar, and M. Naser-Moghadasi, "Miniaturization of a microstrip loop antenna for wireless based on metamaterial metasurface," International Journal of Electronics and Communications (AEU), Vol. 83, 32-39, 2018.
doi:10.1016/j.aeue.2017.08.024 Google Scholar
10. Pirooj, A., M. Naser-Moghadasi, and F. B. Zarrabi, "Design of compact slot antenna based on split ring resonator for 2.45/5 GHz WLAN applications with circular polarization," Microwave and Optical Technology Letter, Vol. 58, No. 1, 12-16, 2016.
doi:10.1002/mop.29484 Google Scholar
11. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarization," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 891-901, 2017.
doi:10.1017/S1759078716000726 Google Scholar
12. Hrideshkumarverma, R., S. Meena, M. Kumar, and S. P. Singh, "A low RCS compact circularly polarized dual band slot antenna loaded with SRR and CSRR for satellite applications," International Journal of Electronics, 2020. Google Scholar
13. Rajalakshmi, P. and N. Gunavathi, "Gain enhancement of cross shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401 Google Scholar
14. Rajalakshmi, P. and N. Gunavathi, "Compact complementary folded triangle split ring resonator triband mobile handset planar antenna for voice and Wi-Fi applications," Progress in Electromagnetics Research Letters, Vol. 91, 253-264, 2019.
doi:10.2528/PIERC19021806 Google Scholar
15. Gupta, A. and R. K. Chaudhary, "A compact dual-band short ended metamaterial antenna with extended bandwidth," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 5, 435-441, 2016.
doi:10.1002/mmce.20980 Google Scholar
16. Kukreja, J., D. K. Choudhary, and R. K. Chaudhary, "CPW fed miniaturized dual-band short ended metamaterial antenna using modified split ring resonator for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 8, 1-7, 2017.
doi:10.1002/mmce.21123 Google Scholar
17. Gunavathi, N. and D. Sriram Kumar, "CPW-fed monopole antenna with reduced radiation hazards towards human head using metallic thin-wire mesh for 802.11ac applications," Microwave and Optical Technology Letters (MOTL), Vol. 57, No. 11, 2684-2687, 2015.
doi:10.1002/mop.29411 Google Scholar
18. Gunavathi, N. and D. Sriram Kumar, "Miniaturized unilateral coplanar waveguide-fed asymmetric planar antenna with reduced radiation hazards for 802.11ac applications," Microwave and Optical Technology Letters (MOTL), Vol. 58, No. 2, 338-343, 2015. Google Scholar
19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
20. Chen, H. J., J. Zhang, Y. Bai, Y. Luo, J. Q. Ran, et al. "Experimental retrieval of the effective parameters of metamaterial based on a waveguide method," Optics Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944 Google Scholar
21. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar