1. Dogariu, A., A. Kuzmich, and L. Wang, "Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity," Physical Review A, Vol. 63, No. 5, 053806, 2001.
doi:10.1103/PhysRevA.63.053806 Google Scholar
2. Brillouin, L., Wave Propagation and Group Velocity, Vol. 8, Academic Press, 2013.
3. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 2007.
4. Bolda, E. L., J. C. Garrison, and R. Y. Chiao, "Optical pulse propagation at negative group velocities due to a nearby gain line," Physical Review A, Vol. 49, No. 4, 2938, 1994.
doi:10.1103/PhysRevA.49.2938 Google Scholar
5. Wang, L., A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature, Vol. 406, No. 6793, 277-279, 2000.
doi:10.1038/35018520 Google Scholar
6. Siddiqui, O. F., S. J. Erickson, G. V. Eleftheriades, and M. Mojahedi, "Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 5, 1449-1454, 2004.
doi:10.1109/TMTT.2004.827018 Google Scholar
7. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2619-2625, 2003.
doi:10.1109/TAP.2003.817556 Google Scholar
8. Siddiqui, O. F., R. Ramzan, M. Amin, M. Omar, and N. Bastaki, "Lorentz reflect-phase detector for moisture and dielectric sensing," IEEE Sensors Journal, Vol. 18, No. 22, 9236-9242, 2018.
doi:10.1109/JSEN.2018.2869401 Google Scholar
9. Solli, D., R. Chiao, and J. Hickmann, "Superluminal effects and negative group delays in electronics, and their applications," Physical Review E, Vol. 66, No. 5, 056601, 2002.
doi:10.1103/PhysRevE.66.056601 Google Scholar
10. Siddiqui, O., R. Ramzan, M. Omar, and M. Amin, "Phase sensinga novel material characterization method," 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 1-4, IEEE, 2017. Google Scholar
11. Ramzan, R., O. F. Siddiqui, M. W. Arshad, and O. M. Ramahi, "A complex permittivity extraction method based on anomalous dispersion," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3787-3796, Nov. 2016.
doi:10.1109/TMTT.2016.2605664 Google Scholar
12. Siddiqui, O., R. Ramzan, M. Amin, and O. M. Ramahi, "A non-invasive phase sensor for permittivity and moisture estimation based on anomalous dispersion," Scientific Reports, Vol. 6, Jun. 2016. Google Scholar
13. Pozar, D., Microwave Engineering, John Wiley & Sons, 2005.
14. Kharangate, L. S., N. Guinde, and A. Tamba, "A novel approach for metal detection in food using curve fitting technique," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1867-1871, IEEE, 2017. Google Scholar
15. Haimovich, H., D. Marelli, and D. Sarlinga, "A signal processing method for metal detection sensitivity improvement in balance-coil metal detectors for food products," 2020 IEEE International Conference on Industrial Technology (ICIT), 645-651, IEEE, 2020.
doi:10.1109/ICIT45562.2020.9067312 Google Scholar
16. Nor, F. M., A. R. Tamuri, and A. K. Ismail, "Fake gold: Gold purity measurement using non destructive method," International Journal of Engineering & Technology, Vol. 8, No. 1.1, 165-172, 2019. Google Scholar
17. Robinson, S. and R. Nakkeeran, "Photonic crystal based sensor for sensing the salinity of seawater," IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012), 495-499, IEEE, 2012. Google Scholar
18. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.
19. Chen, L.-F., C. Ong, C. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
20. Siddiqui, O., "The forward transmission matrix method for S-parameter analysis of microwave circuits and their metamaterial counterparts," Progress In Electromagnetics Research B, Vol. 66, 123-141, 2016.
doi:10.2528/PIERB16012101 Google Scholar
21. Systems, D., Cst microwave studio, , https://www.3ds.com/products-services/simulia/products/cststudio-suite/.
22. Kobayashi, Y. and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 2466-2488, Apr. 1985. Google Scholar
23. Dube, D., M. T. Lanagan, J. H. Kim, and S. J. Jang, "Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique," Journal of Applied Physics, Vol. 63, 2466-2488, Apr. 1988.
doi:10.1063/1.341024 Google Scholar
24. Santra, M. and K. U. Limaye, "Estimation of complex permittivity of arbitrary shape and size dielectric samples using cavity measurement technique at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 718-722, Feb. 2005.
doi:10.1109/TMTT.2004.840570 Google Scholar
25. Sheen, J., "Study of microwave dielectric properties measurements by various resonance techniques," Measurement, Vol. 37, 123-130, Dec. 2005.
doi:10.1016/j.measurement.2004.11.006 Google Scholar
26. Kronig, R. D. L., "On the theory of the dispersion of x-rays," J. Opt. Soc. Am., Vol. 12, 547-557, 1926.
doi:10.1364/JOSA.12.000547 Google Scholar