1. Krikidis, I., T. Stelios, S. Nikolaou, G. Zheng, D. W. Kwan, and R. Schober, "Simultaneous wireless information and power transfer in modern communication systems," IEEE Communications Magazine, Vol. 52, 104-110, 2014.
doi:10.1109/MCOM.2014.6957150 Google Scholar
2. Shinohara, N., Wireless Power Transfer via Radio Waves, Wiley, 2014.
3. Sun, H. and W. Geyi, "A new rectenna with all polarization receiving capability for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 814-817, 2016.
doi:10.1109/LAWP.2015.2476345 Google Scholar
4. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018.
doi:10.1109/ACCESS.2018.2848907 Google Scholar
5. Lin, W., R. W. Ziolkowski, and J. Huang, "Electrically small low-profile, highly efficient Huygens dipole rectennas for wirelessly powering internet of things devices," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3670-3679, 2019.
doi:10.1109/TAP.2019.2902713 Google Scholar
6. Wang, M., Y. Fan, L. Yang, Y. Li, J. Feng, and Y. Shi, "Compact dual band rectenna for RF energy harvest based on a tree like antenna," IET Microwaves Antennas and Propagation, Vol. 13, No. 9, 1350-1357, 2019.
doi:10.1049/iet-map.2018.5704 Google Scholar
7. Li, X., L. Yang, and L. Huang, "Novel design of 2.45 GHz rectenna element and array for wireless power transmission," IEEE Access, Vol. 7, 28356-28362, 2019.
doi:10.1109/ACCESS.2019.2900329 Google Scholar
8. Hu, Y. Y., S. Sun, and H. Xu, "Compact collinear quasi Yagi antenna array for wireless energy harvesting," IEEE Access, Vol. 8, 35308-35317, 2020.
doi:10.1109/ACCESS.2020.2974815 Google Scholar
9. Sun, H., H. He, and J. Huang, "Polarization insensitive rectenna arrays with different power combining strategies," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 492-496, 2020.
doi:10.1109/LAWP.2020.2968616 Google Scholar
10. Takabayashi, N., N. Shinohara, T. Mitani, M. Furukawa, and T. Fujiwara, "Rectification improvement with flat topped beams on 2.45 GHz rectenna arrays," IEEE Transations on Microwave Theory and Techniques, Vol. 68, No. 3, 1151-1163, 2020.
doi:10.1109/TMTT.2019.2951098 Google Scholar
11. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "A dual band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873 Google Scholar
12. Nie, M. J., X. X. Yang, G. N. Tan, and B. Han, "A compact 2.45 GHz broadband rectenna using grounded coplanar waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 986-989, 2015.
doi:10.1109/LAWP.2015.2388789 Google Scholar
13. Song, C., Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, "A high efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719 Google Scholar
14. Song, C., Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, "Novel compact and broadband frequency selectable rectennas for a wide input power and load impedance range," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3306-3316, 2018.
doi:10.1109/TAP.2018.2826568 Google Scholar
15. Shi, Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 814-822, 2019.
doi:10.1109/TAP.2018.2882632 Google Scholar
16. Shi, Y., J. Jing, Y. Fan, L. Yang, J. Pang, and M. Wang, "Efficient RF energy harvest with a novel broadband Vivaldi rectenna," Microwave and Optical Technology Letters, Vol. 60, 2420-2425, 2018. Google Scholar
17. Lee, C. H. and Y. H. Chang, "Design of a broadband circularly polarized rectenna for microwave power transmission," Microwave and Optical Technology Letters, Vol. 57, 702-706, 2014. Google Scholar
18. Lu, P., K. M. Huang, Y. Yang, F. Cheng, and L. Wu, "Frequency reconfigurable rectenna with an adaptive matching stub for microwave power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 956-960, 2019.
doi:10.1109/LAWP.2019.2906671 Google Scholar
19. Lu, P., C. Song, and K. M. Huang, "A compact rectenna design with wide input power range for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 35, No. 7, 6705-6710, 2020.
doi:10.1109/TPEL.2019.2963422 Google Scholar
20. Yang, X. X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Q. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550 Google Scholar
21. Zhu, G. L., J. X. Du, X. X. Yang, Y. G. Zhou, and S. Gao, "Dual-polarized communication rectenna array for simultaneous wireless information and power transmission," IEEE Access, Vol. 7, 141978-141986, 2019.
doi:10.1109/ACCESS.2019.2943611 Google Scholar
22. Lin, W. and R. W. Ziolkowski, "Electrically small Huygens antenna-based fully integrated wireless power transfer and communication system," IEEE Access, Vol. 7, 39762-39769, 2019.
doi:10.1109/ACCESS.2019.2903545 Google Scholar
23. Li, X. T., F. Cheng, P. Lu, and K. Huang, "High isolation diplexer using stub-loaded resonators," Electronic Letters, Vol. 55, No. 14, 800-801, 2019.
doi:10.1049/el.2019.1201 Google Scholar
24. Zhang, Z. C., S. W. Wong, J. Y. Lin, H. Liu, L. Zhu, and Y. He, "Design of multistate diplexers on uniform and stepped-impedance stub-loaded resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1452-1460, 2019.
doi:10.1109/TMTT.2019.2893656 Google Scholar
25. Wong, S. W., B. L. Zheng, J. Y. Lin, Z. C. Zhang, Y. Yang, L. Zhu, and Y. He, "Design of three-state diplexer using a planar triple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 9, 4040-4046, 2018.
doi:10.1109/TMTT.2018.2842791 Google Scholar
26. Xiao, J. K., Y. Li, and J. G. Ma, "Compact and high isolated triangular split-ring diplexer," Electronic Letters, Vol. 54, No. 10, 661-663, 2018.
doi:10.1049/el.2018.0523 Google Scholar
27. Xiao, J. K., M. Zhang, and J. G. Ma, "A compact and high-isolated multi resonator-coupled diplexer," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 999-1001, 2018.
doi:10.1109/LMWC.2018.2873214 Google Scholar
28. Chen, X., X. Yu, and S. Sun, "Design of high-performance microstrip diplexers with stub-loaded parallel-coupled lines," Electronic Letters, Vol. 53, No. 15, 1052-1054, 2017.
doi:10.1049/el.2017.1605 Google Scholar
29. Deng, P. H., R. C. Liu, W. D. Lin, and W. Lo, "Design of a microstrip low-pass-bandpass diplexer using direct-feed coupled-resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 254-256, 2017.
doi:10.1109/LMWC.2017.2661971 Google Scholar
30. Bui, D. H. N., T. P. Vuong, B. Allard, J. Verdier, and P. Benech, "Compact low-loss microstrip diplexer for RF energy harvesting," Electronic Letters, Vol. 53, No. 8, 552-554, 2017.
doi:10.1049/el.2017.0022 Google Scholar
31. Yan, J. M., H. Y. Zhou, and L. Z. Cao, "Compact diplexer using microstrip half and quarter wavelength resonators," Electronic Letters, Vol. 52, No. 19, 1613-1615, 2016.
doi:10.1049/el.2016.2127 Google Scholar
32. Xiao, J. K., M. Zhu, Y. Li, L. Tian, and J. G. Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, 2015.
doi:10.1109/LMWC.2015.2495194 Google Scholar
33. Chen, C. F., C. Y. Lin, B. H. T. Seng, and S. F. Chang, "High-isolation and high-rejection microstrip diplexer with independently controllable transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 12, 851-853, 2014.
doi:10.1109/LMWC.2014.2361684 Google Scholar
34. Guan, X., F. Yang, H. Liu, and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 6, 385-387, 2014.
doi:10.1109/LMWC.2014.2313591 Google Scholar
35. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2016. Google Scholar
36. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," 19th Iranian Conference on Electrical Engineering, 2011. Google Scholar
37. Keshavarz, R. and N. Shariati, "Low profile metamaterial band-pass filter loaded with 4-turn complementary spiral resonator for WPT applications," 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2020. Google Scholar
38. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," 33rd URSI General Assembly and Scientific Symposium, 2020. Google Scholar
39. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarzt, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications, Vol. 111, 1-5, 2019. Google Scholar
40. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 12, 2099-2109, 1996.
doi:10.1109/22.543968 Google Scholar
41. SMS 7630-079LF Schottky diode datasheet, Skyworks Solutions, 2018.