1. Downey, A., Y.-H. Lui, C. Hu, S. Laflamme, and S. Hu, "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliab. Eng. Syst. Saf., Vol. 182, 1-12, 2019.
doi:10.1016/j.ress.2018.09.018 Google Scholar
2. Xia, M., X. Zheng, M. Imran, and M. Shoaib, "Data-driven prognosis method using hybrid deep recurrent neural network," Appl. Soft Comput., Vol. 93, 106351, 2020.
doi:10.1016/j.asoc.2020.106351 Google Scholar
3. Du, P., J. Wang, W. Yang, and T. Niu, "A novel hybrid model for short-term wind power forecasting," Appl. Soft Comput., Vol. 80, 93-106, 2019.
doi:10.1016/j.asoc.2019.03.035 Google Scholar
4. Rigamonti, M., P. Baraldi, E. Zio, D. Astigarraga, and A. Galarza, "Particle filter-based prognostics for an electrolytic capacitor working in variable operating conditions," IEEE Trans. Power Electron., Vol. 31, No. 2, 1567-1575, 2015.
doi:10.1109/TPEL.2015.2418198 Google Scholar
5. Celaya, J. R., C. S. Kulkarni, S. Saha, G. Biswas, and K. Goebel, "Accelerated aging in electrolytic capacitors for prognostics," Proceedings of the Annual Reliability and Maintainability Symposium, 1-6, 2012. Google Scholar
6. Renwick, J., C. S. Kulkarni, and J. R. Celaya, "Analysis of electrolytic capacitor degradation under electrical overstress for prognostic studies," Proceedings of the Annual Conference of the Prognostics and Health Management Society, Vol. 6, 2015. Google Scholar
7. Jamshidi, M. B. and N. Alibeigi, "Neuro-fuzzy system identification for remaining useful life of electrolytic capacitors," 2017 2nd International Conference on System Reliability and Safety (ICSRS), 227-231, 2017.
doi:10.1109/ICSRS.2017.8272826 Google Scholar
8. Lee, K.-W., M. Kim, J. Yoon, S. Bin Lee, and J.-Y. Yoo, "Condition monitoring of DC-link electrolytic capacitors in adjustable-speed drives," IEEE Trans. Ind. Appl., Vol. 44, No. 5, 1606-1613, 2008.
doi:10.1109/TIA.2008.2002277 Google Scholar
9. Qin, Q., S. Zhao, S. Chen, D. Huang, and J. Liang, "Adaptive and robust prediction for the remaining useful life of electrolytic capacitors," Microelectron. Reliab., Vol. 87, 64-74, 2018.
doi:10.1016/j.microrel.2018.05.020 Google Scholar
10. Garcia-Garcia, A., S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, "A survey on deep learning techniques for image and video semantic segmentation," Appl. Soft Comput., Vol. 70, 41-65, 2018.
doi:10.1016/j.asoc.2018.05.018 Google Scholar
11. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705 Google Scholar
12. Liu, C., M.-H. Yang, and X.-W. Sun, "Towards robust human millimeter wave imaging inspection system in real time with deep learning," Progress In Electromagnetics Research, Vol. 161, 87-100, 2018.
doi:10.2528/PIER18012601 Google Scholar
13. Lin, Y., X. Li, and Y. Hu, "Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications," Appl. Soft Comput., Vol. 72, 555-564, 2018.
doi:10.1016/j.asoc.2018.01.036 Google Scholar
14. Zhang, L., J. Lin, B. Liu, Z. Zhang, X. Yan, and M. Wei, "A review on deep learning applications in prognostics and health management," IEEE Access, Vol. 7, 162415-162438, 2019.
doi:10.1109/ACCESS.2019.2950985 Google Scholar
15. Cabanas, M. F., F. Pedrayes Gonzalez, M. G. Melero, C. H. Rojas Garcıa, G. A. Orcajo, J. M. Cano Rodrıguez, and J. G. Norniell, "Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis," Progress In Electromagnetics Research, Vol. 114, 211-234, 2011.
doi:10.2528/PIER11010302 Google Scholar
16. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201 Google Scholar
17. Vasan, A. S. S., B. Long, and M. Pecht, "Diagnostics and prognostics method for analog electronic circuits," IEEE Trans. Ind. Electron., Vol. 60, No. 11, 5277-5291, 2012.
doi:10.1109/TIE.2012.2224074 Google Scholar
18. Venet, P., F. Perisse, M. H. El-Husseini, and G. Rojat, "Realization of a smart electrolytic capacitor circuit," IEEE Ind. Appl. Mag., Vol. 8, No. 1, 16-20, 2002.
doi:10.1109/2943.974353 Google Scholar
19. Kulkarni, C., G. Biswas, J. Celaya, and K. Goebel, "Prognostic techniques for capacitor degradation and health monitoring," The Maintenance & Reliability Conference, MARCON, 2011. Google Scholar
20. Gupta, A., O. P. Yadav, D. DeVoto, and J. Major, "A review of degradation behavior and modeling of capacitors," ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Vol. 51920, 2018. Google Scholar
21. Leite, A. V. T., H. J. A. Teixeira, A. J. Marques Cardoso, and R. M. Esteves Araujo, "A simple ESR identification methodology for electrolytic capacitors condition monitoring," Proceedings of the 20th International Congress on Condition Monitoring and Diagnostic Engineering Management, COMADEM’07, 75-84, 2007. Google Scholar
22. Hochreiter, S. and J. Schmidhuber, "Long short-term memory," Neural Comput., Vol. 9, No. 8, 1735-1780, 1997.
doi:10.1162/neco.1997.9.8.1735 Google Scholar
23. Pascanu, R., T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent neural networks," International Conference on Machine Learning, 1310-1318, 2013. Google Scholar
24. Huang, C.-G., H.-Z. Huang, and Y.-F. Li, "A bidirectional LSTM prognostics method under multiple operational conditions," IEEE Trans. Ind. Electron., Vol. 66, No. 11, 8792-8802, 2019.
doi:10.1109/TIE.2019.2891463 Google Scholar
25. Huang, C.-G., X.-Y. Li, H.-Z. Huang, and Y.-F. Li, "Fault prognosis of engineered systems: A deep learning perspective," 2019 Annual Reliability and Maintainability Symposium (RAMS), 1-7, 2019. Google Scholar
26. Merity, S., N. S. Keskar, and R. Socher, "Regularizing and optimizing LSTM language models," International Conference on Learning Representations, 2018. Google Scholar
27. Chen, J., H. Jing, Y. Chang, and Q. Liu, "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliab. Eng. Syst. Saf., Vol. 185, 372-382, 2019.
doi:10.1016/j.ress.2019.01.006 Google Scholar
28. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., Vol. 15, No. 1, 1929-1958, 2014. Google Scholar
29. Zhang, Y., R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries," IEEE Trans. Veh. Technol., Vol. 67, No. 7, 5695-5705, 2018.
doi:10.1109/TVT.2018.2805189 Google Scholar
30. Kulkarni, C. S., J. R. Celaya, G. Biswas, and K. Goebel, "Prognostics of power electronics, methods and validation experiments," 2012 IEEE AUTOTESTCON Proceedings, 194-199, 2012.
doi:10.1109/AUTEST.2012.6334578 Google Scholar
31. Kulkarni, C., G. Biswas, X. Koutsoukos, J. Celaya, and K. Goebel, "Integrated diagnostic/ prognostic experimental setup for capacitor degradation and health monitoring," 2010 IEEE AUTOTESTCON, 1-7, 2010. Google Scholar
32. Shatnawi, A., G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, "A comparative study of open source deep learning frameworks," 2018 9th International Conference on Information and Communication Systems (ICICS), 72-77, 2018.
doi:10.1109/IACS.2018.8355444 Google Scholar