Vol. 96
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-03-09
Direction Finding for Coherently Distributed Sources with Gain-Phase Errors
By
Progress In Electromagnetics Research Letters, Vol. 96, 153-161, 2021
Abstract
Affected by multipath propagation as well as the receiving conditions of an actual array, a distributed source model considering array uncertainties/errors is more consistent with the realistic scenarios. In this paper, a new direction finding method for coherently distributed (CD) sources in the presence of array gain-phase errors is proposed. By exploiting partly calibrated uniform linear arrays (ULA), the gain-phase errors are first estimated according to the relationship of elements of array covariance matrix, and then a two-step iterative procedure is introduced to achieve a joint estimation of nominal DOA and angular spread from sparse recovery perspective. Performance analysis and related Cramér-Rao bound (CRB) are also provided. Numerical examples show that the proposed method can provide improved resolution and estimation accuracy, and performs almost independently of gain-phase errors.
Citation
Ye Tian, Zhiyan Dong, and Shuai Liu, "Direction Finding for Coherently Distributed Sources with Gain-Phase Errors," Progress In Electromagnetics Research Letters, Vol. 96, 153-161, 2021.
doi:10.2528/PIERL20121704
References

1. Jiang, Z., Z. Zhang, T. Zhao, H. Chen, and W. Wang, "Augmented quaternion MUSIC method for a uniform/sparse COLD array," Progress In Electromagnetics Research Letters, Vol. 95, 25-32, 2021.
doi:10.2528/PIERL20102303

2. Zoubir, A. and Y. Wang, "Efficient DSPE algorithm for estimating the angular parameters of coherently distributed sources," Signal Processing, Vol. 88, No. 4, 1071-1078, 2008.
doi:10.1016/j.sigpro.2007.11.002

3. Meng, Y., P. Stoica, and K. M. Wong, "Estimation of the directions of arrival of spatially dispersed signals in array processing," Proc. IEE Radar, Sonar, Navigat., Vol. 143, 1-9, 1996.
doi:10.1049/ip-rsn:19960170

4. Wan, L., G. Han, J. Jiang, et al. "DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems," IEEE Systems Journal, Vol. 11, No. 1, 41-49, 2017.
doi:10.1109/JSYST.2015.2445052

5. Tian, Y., H. Yue, and X. Rong, "Multi-parameters estimation of coherently distributed sources under coexistence of circular and noncircular signals," IEEE Communications Letters, Vol. 24, No. 6, 1254-1257, 2020.
doi:10.1109/LCOMM.2020.2981028

6. Tian, Q., T. Qiu, and R. Cai, "DOA estimation for CD sources by complex cyclic correntropy in an impulsive noise environment," IEEE Communications Letters, Vol. 24, No. 5, 1015-1019, 2020.
doi:10.1109/LCOMM.2020.2976957

7. Boujemaa, H., "Extension of COMET algorithm to multiple diffuse source localization in azimuth and elevation," European Transactions on Telecommunications, Vol. 16, No. 6, 557-566, 2005.
doi:10.1002/ett.1021

8. Hu, A., T. Lv, H. Cao, et al. "An ESPRIT-based approach for 2-D localization of incoherently distributed sources in massive MIMO systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 8, No. 5, 996-1011, 2014.
doi:10.1109/JSTSP.2014.2313409

9. Zheng, Z., W. Wang, H. Meng, et al. "Efficient beanspace-based algorithm for two-dimensional DOA estimation of incoherently distributed sources in massive MIMO systems," IEEE Transactions on Vehicular Technology, Vol. 67, No. 12, 11776-11789, 2018.
doi:10.1109/TVT.2018.2875023

10. Xu, H., Y. Tian, and S. Liu, "Linear-shrinkage-based DOA estimation for coherently distributed sources considering mutual coupling in massive MIMO systems," AEU — International Journal of Electronics and Communications, Vol. 126, 1-6, 2020.

11. Liu, A., G. Liao, C. Zeng, et al. "An eigenstructure method for estimating DOA and sensor gain-phase errors," IEEE Transactions on Signal Processing, Vol. 59, No. 12, 5944-5956, 2011.
doi:10.1109/TSP.2011.2165064

12. Cao, S., Z. Ye, D. Xu, and X. Xu, "A Hadamard product based method for DOA estimation and gain-phase error calibration," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, 1224-1233, 2013.
doi:10.1109/TAES.2013.6494409

13. Pesavento, M., A. B. Gershman, and K. M. Wong, "Direction finding in partly calibrated sensor arrays composed of multiple subarrays," IEEE Transactions on Signal Processing, Vol. 50, No. 9, 2103-2115, 2002.
doi:10.1109/TSP.2002.801929

14. Tian, Y., J. Shi, H. Yue, and X. Rong, "Calibrating nested sensor arrays for DOA estimation utilizing continuous multiplication operator," Signal Processing, Vol. 176, 1-11, 2020.

15. Lin, M. and L. Yang, "Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling," IEEE Antennas Wireless Propagation Letters, Vol. 5, 315-318, 2006.
doi:10.1109/LAWP.2006.878898

16. Liu, H., L. Zhao, Y. Li, et al. "A sparse-based approach for DOA estimation and array calibration in uniform linear array," IEEE Sensors Journal, Vol. 16, No. 15, 6018-6027, 2016.
doi:10.1109/JSEN.2016.2577712

17. Bresler, Y., "Maximum likelihood estimation of a linearly structured covariance with application to antenna array processing," Proc. 4th Annual ASSP Workshop Spectrum Estimation Model., 172-175, Minneapolis, MN, USA, Aug. 1988.

18. Arlot, A. and A. Cellsse, "A survey of cross-validation procedures for model selection," Statistics Survery, Vol. 4, 40-79, Institute of Mathematical Statistics (IMS), 2010.

19. Herman, M. A. and T. Strohmer, "General deviants: An analysis of perturbations in compressed sensing," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 342-349, 2010.
doi:10.1109/JSTSP.2009.2039170