1. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
2. Rappaport, T. S., et al. "Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (Invited Paper)," IEEE Radio and Wireless Symposium (RWS), 151-154, 2012. Google Scholar
3. Sulyman, A. I., et al. "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, No. 9, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456 Google Scholar
4. Wu, D., S. W. Cheung, T. I. Yuk, and X. L. Sun, "A planar MIMO antenna for mobile phones," PIERS Proceedings, 1150-1152, Taipei, March 25–28, 2013. Google Scholar
5. Haraz, O. M., M. M. Ashraf, and S. Alshebili, "8 × 8 patch antenna array with polarization and space diversity for future 5G cellular applications," International Conference on Information and Communication Technology Research, 258-261, 2015. Google Scholar
6. Liu, S. T., Y. W. Hsu, and Y. C. Lin, "A dual polarized cavity-backed aperture antenna for 5G mmW MIMO applications," IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), 1-5, 2015. Google Scholar
7. Khalily, M., R. Tafazolli, T. Rahman, and M. Kamarudin, "Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28 GHz mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1305-1308, 2016.
doi:10.1109/LAWP.2015.2505781 Google Scholar
8. Parchin, N. O., M. Shen, and G. F. Pedersen, "End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, 2016. Google Scholar
9. Rafique, U., H. Khalil, and S. Rehman, "Dual-band microstrip patch antenna array for 5G mobile communications," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), Singapore, November 19–22, 2017. Google Scholar
10. Khalily, M., R. Tafazolli, P. Xiao, A. A. Kishk, and , "Broadband mm-Wave microstrip array antenna with improved radiation characteristics for different 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4641-4647, 2018.
doi:10.1109/TAP.2018.2845451 Google Scholar
11. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwave, Antennas & Propagation, Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467 Google Scholar
12. Chu, S., M. N. Hasan, J. Yan, and C. C. Chu, "Tri-band 2 × 2 5G MIMO antenna array," Asia-Pacific Microwave Conference (APMC), 1543-1545, 2018.
doi:10.23919/APMC.2018.8617590 Google Scholar
13. Shuhrawardy, M., M. H. M. Chowdhury, and R. Azim, "A four-element compact wideband MIMO antenna for 5G applications," International Conference on Electrical, Computer and Communication Engineering (ECCE), 1-5, 2019. Google Scholar
14. Khalid, M., et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 71, 1-13, 2020. Google Scholar
15. Du Plessis, M. and J. Cloete, "Tuning stubs for microstrip-patch antennas," EEE Antennas and Propagation Magazine, Vol. 36, No. 6, 52-56, 1994.
doi:10.1109/74.370523 Google Scholar
16. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
17. Chouchene, W., C. Larbi, and T. Aguili, "New electrical equivalent circuit model of the inset fed rectangular patch antenna," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), Singapore, November 19–22, 2017. Google Scholar
18. Iqbal, A., et al. "A compact UWB antenna with independently controllable notch bands," Sensors, Vol. 19, No. 6, 1-12, 2019.
doi:10.3390/s19061411 Google Scholar
19. Rahman, S., Q. Cao, H. Ullah, and H. Khalil, "Compact design of trapezoid shape monopole antenna for SWB application," Microwave and Optical Technology Letters, Vol. 61, 1931-1937, 2019.
doi:10.1002/mop.31805 Google Scholar
20. Ludwig, A. C., "The definition of cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 1, 116-119, 1973.
doi:10.1109/TAP.1973.1140406 Google Scholar
21. Cornelius, R., A. Narbudowicz, M. J. Ammann, and D. Heberling, "Calculating the envelope correlation coefficient directly from spherical modes spectrum," 2017 11th European Conference on Antennas and Propagation, 2017. Google Scholar
22. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, No. 9–10, 415-427, 2018.
doi:10.1515/freq-2017-0276 Google Scholar