1. Schott, J. R., Fundamentals of Polarimetric Remote Sensing, Vol. 81, SPIE Press, 2009.
doi:10.1117/3.817304
2. Ryzhkov, A. V. and D. S. Zrnic, Radar Polarimetry for Weather Observations, Springer Nature Switzerland AG, Cham, Switzerland, 2019.
doi:10.1007/978-3-030-05093-1
3. Dai, H., X. Wang, H. Xie, S. Xiao, and J. Luo, Spatial Polarization Characteristics of Radar Antenna. Analysis, Measurement and Anti-jamming Application, Springer and National Defense Industry Press, Beijing, 2019.
4. Kuwata-Gonokami, M., "Terahertz spectroscopy: Ellipsometry and active polarization control for terahertz waves," Terahertz Spectroscopy and Imaging, Reiponen, K.-E., J. A. Zeitler, and M. Kuwata-Gonokami, Eds., Springer Series in Optical Sciences, Vol. 171, W. T. Rhodes, Editor-in-Chief, Springer, 2013. Google Scholar
5. Cheng, Y., L. Qiao, D. Zhu, Y. Wang, and Z. Zhao, "Passive polarimetric imaging of millimeter and terahertz waves for personnel security screening," Opt. Lett., Vol. 46, No. 6, 1233-1236, 2021.
doi:10.1364/OL.418497 Google Scholar
6. Weber, T., T. Käsebier, M. Helgert, E.-B. Kley, and A. Tünnermann, "Tungsten wire grid polarizer for applications in the DUV spectral range," Appl. Opt., Vol. 51, No. 16, 3224-3227, 2012.
doi:10.1364/AO.51.003224 Google Scholar
7. Wang, J. J., W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett., Vol. 30, No. 2, 195-197, 2005.
doi:10.1364/OL.30.000195 Google Scholar
8. Zhou, L. and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett., Vol. 30, No. 12, 1434-1436, 2005.
doi:10.1364/OL.30.001434 Google Scholar
9. Soares, L. L. and L. Cescato, "etallized photoresist grating as a polarizing beam splitter," Appl. Opt., Vol. 40, No. 32, 5906-5910, 2001.
doi:10.1364/AO.40.005906 Google Scholar
10., https://www.purewavepolarizers.com/wire-grid-polarizers/10-micron-wire-far-ir-thz-polarizer [Accessed: 2021-07-02].
doi:10.1364/AO.40.005906 Google Scholar
11. Manabe, T. and A. Murk, "Transmission and reflection characteristics of slightly irregular wiregrids with finite conductivity for arbitrary angles of incidence and grid rotation," IEEE Trans. Anten. Propagat., Vol. 53, No. 1, 250-259, 2005.
doi:10.1109/TAP.2004.838786 Google Scholar
12. Den Boer, J. H. W. G., G. M. W. Kroesen, W. de Zeeuw, and F. J. de Hoog, "Improved polarizer in the infrared: Two wire-grid polarizers in tandem," Opt. Lett., Vol. 20, No. 7, 800-802, 1995.
doi:10.1364/OL.20.000800 Google Scholar
13. Yu, Z., P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett., Vol. 77, No. 7, 927-929, 2000.
doi:10.1063/1.1288674 Google Scholar
14. Ekinci, Y., H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express, Vol. 14, No. 6, 2323-2334, 2006.
doi:10.1364/OE.14.002323 Google Scholar
15. Yurchenko, V. B. and E. V. Yurchenko, "Dual-layer frequency-selective subwavelength-grid polarizers for THz applications," Proceedings of the 6th International Kharkov Symposium Physics and Engineering of Microwaves, MM and SubMM Waves (MSMW-07), 222-224, Kharkov, Ukraine, June 25–30, 2007. Google Scholar
16. Yurchenko, V. B., M. L. Gradziel, and J. A. Murphy, "Dual-layer grid polarizers for mm and submm waves: theory and experiment," Proceedings of the 7th International Kharkov Symposium on Physics and Engineering of Microwaves, MM, SubMM Waves and Workshop on THz Technology (MSMW-10), W-5, Kharkov, Ukraine, June 21–26, 2010. Google Scholar
17. Yurchenko, V. B., J. A. Murphy, J. Barton, J. Verheggen, and K. Rodgers, "Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications," Proceedings of the EuMW 2008: 38th European Microwave Conference 2008 (EuMC-2008), 10.14-10.17, Amsterdam, The Netherlands, October 28–31, 2008. Google Scholar
18. Sun, L., Z.-H. Lv, W. Wu, W.-T. Liu, and J.-M. Yuan, "Double-grating polarizer for terahertz radiation with high extinction ratio," Appl. Opt., Vol. 49, No. 11, 2066-2071, 2010.
doi:10.1364/AO.49.002066 Google Scholar
19. Deng, L. Y., J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, "Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure," Appl. Phys. Lett., Vol. 101, 011101, 2012.
doi:10.1063/1.4729826 Google Scholar
20. Lee, Y. H., P. Peranantham, and C. K. Hwangbo, "Fabrication of a bilayer wire grid polarizer in the near infrared wavelength region by using a UV curing nanoimprinting method," J. Korean Phys. Soc., Vol. 61, No. 10, 1714-1719, 2012.
doi:10.3938/jkps.61.1714 Google Scholar
21. Huang, Z., E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett., Vol. 39, No. 4, 793-796, 2014.
doi:10.1364/OL.39.000793 Google Scholar
22. Lu, B., H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, "A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure," AIP Adv., Vol. 6, 025215, 2016.
doi:10.1063/1.4942515 Google Scholar
23. Xiang, W., X. Huang, D. Li, Q. Zhou, H. Guo, and J. Li, "High extinction ratio terahertz broadband polarizer based on the aligned Ni nanowire arrays," Opt. Lett., Vol. 45, No. 7, 1978-1981, 2020.
doi:10.1364/OL.388772 Google Scholar
24. Lee, J.-K., B. O. Kim, J. Park, J. B. Kim, I.-S. Kang, G. Sim, J. H. Park, and H.-I. Jang, "A bilayer Al nanowire-grid polarizer integrated with an IR-cut filter," Opt. Mat., Vol. 98, 109409, 2019.
doi:10.1016/j.optmat.2019.109409 Google Scholar
25. Ferraro, A., D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, "Flexible terahertz wire grid polarizer with high extinction ratio and low loss," Opt. Lett., Vol. 41, No. 9, 2009-2012, 2016.
doi:10.1364/OL.41.002009 Google Scholar
26. Islam, M. D., J. O. Kim, Y. Ko, Z. Ku, et al. "Design of high efficient mid-wavelength infrared polarizer on ormochalc polymer," Macromol. Mater. Eng., Vol. 305, 2000033, 2020.
doi:10.1002/mame.202000033 Google Scholar
27. Popov, E. (ed.), Gratings: Theory and Numeric Applications, Institut Fresnel, CNRS, AMU, Marseille, France, 2012.
28. Sirenko, Y. K., S. Ström, and Eds., Modern Theory of Gratings, Springer, New York, 2010.
doi:10.1007/978-1-4419-1200-8
29., https://www.pdesolutions.com [Accessed: 2021-07-02]. Google Scholar
30. Yurchenko, V., T. Navruz, M. Ciydem, and A. Altintas, "Light-controlled polarization of mm-waves with photo-excited gratings in a resonant semiconductor slab," Adv. Electromagnetics, Vol. 8, No. 2, 92-100, 2019.
doi:10.7716/aem.v8i2.952 Google Scholar
31. Wainstein, L. A., "On the electrodynamic theory of grids. Part I, II," Elektronika Bol'shikh Moshchnostei, Vol. 2, 26-73, P. L. Kapitza and L. A. Wainstein, Eds., Moscow, 1963 [Engl. transl. in High-Power Electronics, 14–48, Pergamon Press, Oxford, 1966]. High-Power Electronics, 14–48, Pergamon Press, Oxford, 1966]' target='_blank'> Google Scholar
32. Agranovich, Z. S., V. A. Marchenko, and V. P. Shestopalov, "Diffraction of electromagnetic waves from plane metallic gratings," Zhurnal Tehnicheskoy Fiziki, Vol. 32, No. 4, 381-394, 1962 (in Russian). Google Scholar
33. Shestopalov, V. P., The Method of the Riemann-Hilbert Problem in the Theory of Electromagnetic Wave Diffraction and Propagation, Kharkov State Univ. Press, Kharkov, 1971 (in Russian).
34. Shestopalov, V. P., L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Wave Diffraction by Gratings, Kharkov State Univ. Press, Kharkov, 1973 (in Russian).
35. Solimeno, S., B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation, Academic Press, London, 1986.
36. Yurchenko, V., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Light-controlled photonics-based mm-wave beam switch," Opt. Express, Vol. 24, No. 15, 16471, 2016.
doi:10.1364/OE.24.016471 Google Scholar
37. Yurchenko, V., M. Ciydem, M. Gradziel, and L. Yurchenko, "MM-wave dielectric parameters of magnesium fluoride glass wafers," Progress In Electromagnetics Research M, Vol. 62, 89-98, 2017.
doi:10.2528/PIERM17081805 Google Scholar
38. Yurchenko, V., M. Ciydem, M. Gradziel, and J. A. Murphy, "Major reshaping of narrow beams by resonant multilayer structures," Opt. Express, Vol. 28, No. 6, 8211, 2020.
doi:10.1364/OE.386610 Google Scholar
39. Soriano, G., M. Zerrad, and C. Amra, "Anti-scattering effect analyzed with exact theory of light scattering from rough multilayers," Opt. Lett., Vol. 44, No. 18, 4455, 2019.
doi:10.1364/OL.44.004455 Google Scholar
40. Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 4: Wave Propagation Through Random Media, Springer-Verlag, Berlin, 1987.
41. Yurchenko, V. B., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Double-sided split-step mm-wave Fresnel lenses: Design, fabrication and focal field measurements," J. Europ. Opt. Soc. Rap. Publ., Vol. 9, 14007, 2014.
doi:10.2971/jeos.2014.14007 Google Scholar
42. Yurchenko, V. B., A. Altintas, M. Ciydem, and S. Koc, "Experimental conditions for the excitation of thin disk whispering-gallery-mode resonators," Progress In Electromagnetics Research C, Vol. 43, 29-40, 2013.
doi:10.2528/PIERC13062803 Google Scholar