Vol. 114
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-21
Multilayer Grid Polarizers: Simulations for Millimeter Waves
By
Progress In Electromagnetics Research C, Vol. 114, 69-82, 2021
Abstract
Multilayer grid polarizers for millimeter waves produced with photolithographic technology have been simulated. Polarizers have spectral bands of enhanced performance where polarization extinction ratio in decibels grows in proportion to the number of layers. Full-wave modeling is compared with three asymptotic models for subwavelength gratings using adjusted grating parameters. Random variations of interlayer spacings reduce the enhancement of polarizing performance, yet the latter continues to grow in proportion to the number of layers. Broadband signal detection is also considered.
Citation
Vladimir Borisovich Yurchenko Mehmet Ciydem Marcin Gradziel Sencer Koc , "Multilayer Grid Polarizers: Simulations for Millimeter Waves," Progress In Electromagnetics Research C, Vol. 114, 69-82, 2021.
doi:10.2528/PIERC21031107
http://www.jpier.org/PIERC/pier.php?paper=21031107
References

1. Schott, J. R., Fundamentals of Polarimetric Remote Sensing, Vol. 81, SPIE Press, 2009.
doi:10.1117/3.817304

2. Ryzhkov, A. V. and D. S. Zrnic, Radar Polarimetry for Weather Observations, Springer Nature Switzerland AG, Cham, Switzerland, 2019.
doi:10.1007/978-3-030-05093-1

3. Dai, H., X. Wang, H. Xie, S. Xiao, and J. Luo, Spatial Polarization Characteristics of Radar Antenna. Analysis, Measurement and Anti-jamming Application, Springer and National Defense Industry Press, Beijing, 2019.

4. Kuwata-Gonokami, M., "Terahertz spectroscopy: Ellipsometry and active polarization control for terahertz waves," Terahertz Spectroscopy and Imaging, Reiponen, K.-E., J. A. Zeitler, and M. Kuwata-Gonokami, Eds., Springer Series in Optical Sciences, Vol. 171, W. T. Rhodes, Editor-in-Chief, Springer, 2013.

5. Cheng, Y., L. Qiao, D. Zhu, Y. Wang, and Z. Zhao, "Passive polarimetric imaging of millimeter and terahertz waves for personnel security screening," Opt. Lett., Vol. 46, No. 6, 1233-1236, 2021.
doi:10.1364/OL.418497

6. Weber, T., T. Käsebier, M. Helgert, E.-B. Kley, and A. Tünnermann, "Tungsten wire grid polarizer for applications in the DUV spectral range," Appl. Opt., Vol. 51, No. 16, 3224-3227, 2012.
doi:10.1364/AO.51.003224

7. Wang, J. J., W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett., Vol. 30, No. 2, 195-197, 2005.
doi:10.1364/OL.30.000195

8. Zhou, L. and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett., Vol. 30, No. 12, 1434-1436, 2005.
doi:10.1364/OL.30.001434

9. Soares, L. L. and L. Cescato, "etallized photoresist grating as a polarizing beam splitter," Appl. Opt., Vol. 40, No. 32, 5906-5910, 2001.
doi:10.1364/AO.40.005906

10., , https://www.purewavepolarizers.com/wire-grid-polarizers/10-micron-wire-far-ir-thz-polarizer [Accessed: 2021-07-02].
doi:10.1364/AO.40.005906

11. Manabe, T. and A. Murk, "Transmission and reflection characteristics of slightly irregular wiregrids with finite conductivity for arbitrary angles of incidence and grid rotation," IEEE Trans. Anten. Propagat., Vol. 53, No. 1, 250-259, 2005.
doi:10.1109/TAP.2004.838786

12. Den Boer, J. H. W. G., G. M. W. Kroesen, W. de Zeeuw, and F. J. de Hoog, "Improved polarizer in the infrared: Two wire-grid polarizers in tandem," Opt. Lett., Vol. 20, No. 7, 800-802, 1995.
doi:10.1364/OL.20.000800

13. Yu, Z., P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett., Vol. 77, No. 7, 927-929, 2000.
doi:10.1063/1.1288674

14. Ekinci, Y., H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express, Vol. 14, No. 6, 2323-2334, 2006.
doi:10.1364/OE.14.002323

15. Yurchenko, V. B. and E. V. Yurchenko, "Dual-layer frequency-selective subwavelength-grid polarizers for THz applications," Proceedings of the 6th International Kharkov Symposium Physics and Engineering of Microwaves, MM and SubMM Waves (MSMW-07), 222-224, Kharkov, Ukraine, June 25–30, 2007.

16. Yurchenko, V. B., M. L. Gradziel, and J. A. Murphy, "Dual-layer grid polarizers for mm and submm waves: theory and experiment," Proceedings of the 7th International Kharkov Symposium on Physics and Engineering of Microwaves, MM, SubMM Waves and Workshop on THz Technology (MSMW-10), W-5, Kharkov, Ukraine, June 21–26, 2010.

17. Yurchenko, V. B., J. A. Murphy, J. Barton, J. Verheggen, and K. Rodgers, "Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications," Proceedings of the EuMW 2008: 38th European Microwave Conference 2008 (EuMC-2008), 10.14-10.17, Amsterdam, The Netherlands, October 28–31, 2008.

18. Sun, L., Z.-H. Lv, W. Wu, W.-T. Liu, and J.-M. Yuan, "Double-grating polarizer for terahertz radiation with high extinction ratio," Appl. Opt., Vol. 49, No. 11, 2066-2071, 2010.
doi:10.1364/AO.49.002066

19. Deng, L. Y., J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, "Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure," Appl. Phys. Lett., Vol. 101, 011101, 2012.
doi:10.1063/1.4729826

20. Lee, Y. H., P. Peranantham, and C. K. Hwangbo, "Fabrication of a bilayer wire grid polarizer in the near infrared wavelength region by using a UV curing nanoimprinting method," J. Korean Phys. Soc., Vol. 61, No. 10, 1714-1719, 2012.
doi:10.3938/jkps.61.1714

21. Huang, Z., E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett., Vol. 39, No. 4, 793-796, 2014.
doi:10.1364/OL.39.000793

22. Lu, B., H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, "A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure," AIP Adv., Vol. 6, 025215, 2016.
doi:10.1063/1.4942515

23. Xiang, W., X. Huang, D. Li, Q. Zhou, H. Guo, and J. Li, "High extinction ratio terahertz broadband polarizer based on the aligned Ni nanowire arrays," Opt. Lett., Vol. 45, No. 7, 1978-1981, 2020.
doi:10.1364/OL.388772

24. Lee, J.-K., B. O. Kim, J. Park, J. B. Kim, I.-S. Kang, G. Sim, J. H. Park, and H.-I. Jang, "A bilayer Al nanowire-grid polarizer integrated with an IR-cut filter," Opt. Mat., Vol. 98, 109409, 2019.
doi:10.1016/j.optmat.2019.109409

25. Ferraro, A., D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, "Flexible terahertz wire grid polarizer with high extinction ratio and low loss," Opt. Lett., Vol. 41, No. 9, 2009-2012, 2016.
doi:10.1364/OL.41.002009

26. Islam, M. D., et al., "Design of high efficient mid-wavelength infrared polarizer on ormochalc polymer," Macromol. Mater. Eng., Vol. 305, 2000033, 2020.
doi:10.1002/mame.202000033

27. Popov, E. (ed.), Gratings: Theory and Numeric Applications, Institut Fresnel, CNRS, AMU, Marseille, France, 2012.

28. Sirenko, Y. K., S. Ström, and Eds., Modern Theory of Gratings, Springer, New York, 2010.
doi:10.1007/978-1-4419-1200-8

29., , https://www.pdesolutions.com [Accessed: 2021-07-02].

30. Yurchenko, V., T. Navruz, M. Ciydem, and A. Altintas, "Light-controlled polarization of mm-waves with photo-excited gratings in a resonant semiconductor slab," Adv. Electromagnetics, Vol. 8, No. 2, 92-100, 2019.
doi:10.7716/aem.v8i2.952

31. Wainstein, L. A., "On the electrodynamic theory of grids. Part I, II," Elektronika Bol'shikh Moshchnostei, Vol. 2, 26-73, P. L. Kapitza and L. A. Wainstein, Eds., Moscow, 1963 [Engl. transl. in High-Power Electronics, 14–48, Pergamon Press, Oxford, 1966].

32. Agranovich, Z. S., V. A. Marchenko, and V. P. Shestopalov, "Diffraction of electromagnetic waves from plane metallic gratings," Zhurnal Tehnicheskoy Fiziki, Vol. 32, No. 4, 381-394, 1962 (in Russian).

33. Shestopalov, V. P., The Method of the Riemann-Hilbert Problem in the Theory of Electromagnetic Wave Diffraction and Propagation, Kharkov State Univ. Press, Kharkov, 1971 (in Russian).

34. Shestopalov, V. P., L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Wave Diffraction by Gratings, Kharkov State Univ. Press, Kharkov, 1973 (in Russian).

35. Solimeno, S., B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation, Academic Press, London, 1986.

36. Yurchenko, V., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Light-controlled photonics-based mm-wave beam switch," Opt. Express, Vol. 24, No. 15, 16471, 2016.
doi:10.1364/OE.24.016471

37. Yurchenko, V., M. Ciydem, M. Gradziel, and L. Yurchenko, "MM-wave dielectric parameters of magnesium fluoride glass wafers," Progress In Electromagnetics Research M, Vol. 62, 89-98, 2017.
doi:10.2528/PIERM17081805

38. Yurchenko, V., M. Ciydem, M. Gradziel, and J. A. Murphy, "Major reshaping of narrow beams by resonant multilayer structures," Opt. Express, Vol. 28, No. 6, 8211, 2020.
doi:10.1364/OE.386610

39. Soriano, G., M. Zerrad, and C. Amra, "Anti-scattering effect analyzed with exact theory of light scattering from rough multilayers," Opt. Lett., Vol. 44, No. 18, 4455, 2019.
doi:10.1364/OL.44.004455

40. Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 4: Wave Propagation Through Random Media, Springer-Verlag, Berlin, 1987.

41. Yurchenko, V. B., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Double-sided split-step mm-wave Fresnel lenses: Design, fabrication and focal field measurements," J. Europ. Opt. Soc. Rap. Publ., Vol. 9, 14007, 2014.
doi:10.2971/jeos.2014.14007

42. Yurchenko, V. B., A. Altintas, M. Ciydem, and S. Koc, "Experimental conditions for the excitation of thin disk whispering-gallery-mode resonators," Progress In Electromagnetics Research C, Vol. 43, 29-40, 2013.
doi:10.2528/PIERC13062803