Vol. 93
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-07-13
Compact 2 × 2 Automotive MIMO Antenna Systems for Sub-6 GHz 5G and V2X Communications
By
Progress In Electromagnetics Research B, Vol. 93, 23-46, 2021
Abstract
Various multiple-input multiple-output (MIMO) antenna systems for vehicles are presented in this paper usingtwo uniquely designed elements: low profile wideband Planar Inverted-F antenna (PIFA), and compact wideband monopole for automotive application in the sub-6 GHz 5G systems and Vehicle-to-Everything (V2X) communications that operate on the frequency range from 617 MHz to 6 GHz. This paper presents different MIMO configurations to be used in a low-profile housing or a shark fin style on the vehicle's roof. Each MIMO system achievesa satisfactory MIMO performance across the whole band withsuitable physical dimensions. The envelope correlation coefficient (ECC) and diversity gain (DG) are calculated using MATLAB in each MIMO configuration as they represent the two key factors in the MIMO performance. Simulation results are presented along with measured data on 1-meter rolled-edge ground plane (GND) and on vehicle's roof from properly cut metal sheet prototypes. The results are discussed in terms of VSWR, passive isolation between elements, combined radiation patterns, port-efficiencies, ECC and DG.
Citation
Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi, "Compact 2 × 2 Automotive MIMO Antenna Systems for Sub-6 GHz 5G and V2X Communications," Progress In Electromagnetics Research B, Vol. 93, 23-46, 2021.
doi:10.2528/PIERB21031606
References

1. Malik, J., D. Nagpal, and M. V. Kartikeyan, "MIMO antenna with omnidirectional pattern diversity," Electronics Letters, Vol. 52, No. 2, 102-104, Jan. 21, 2016.
doi:10.1049/el.2015.3063

2. Dama, Y. A. S., R. A. Abd-Alhameed, S. M. R. Jones, D. Zhou, N. J. McEwan, M. B. Child, and P. S. Excell, "An envelope correlation formula for (N, N) MIMO antenna arrays using input scattering parameters, and including power losses," International Journal of Antennas Propagation, Vol. 2011, Article ID 421691, 7 pages, 2011.

3. Elshirkasi, A. M., A. Abdullah Al-Hadi, M. F. Mansor, R. Khan, and P. J. Soh, "Envelope correlation coefficient of a two-port MIMO terminal antenna under uniform and Gaussian angular power spectrum with user's hand effect," Progress In Electromagnetics Research C, Vol. 92, 123-136, 2019.
doi:10.2528/PIERC19011006

4. Zhekov, S. S., A. Tatomirescu, E. Foroozanfard, and G. F. Pedersen, "Experimental investigation on the effect of user's hand proximity on a compact ultrawideband MIMO antenna array," IET Microwaves, Antennas Propag., Vol. 10, No. 13, 1402-1410, 2016.
doi:10.1049/iet-map.2016.0054

5. Sharawi, M., A. Hassan, and M. Khan, "Correlation coefficient calculations for MIMO antenna systems: A comparative study," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 10, 1991-2004, 2017.
doi:10.1017/S1759078717000903

6. Arianos, S., G. Dassano, F. Vipiana, and M. Orefice, "Design of multi-frequency compact antennas for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5604-5612, Dec. 2012.
doi:10.1109/TAP.2012.2213052

7. Artner, G., W. Kotterman, G. Del Galdo, and M. A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, 2019.
doi:10.1109/ACCESS.2019.2897219

8. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

9. Beegum, S. F. and S. K. Mishra, "Compact WLAN band-notched printed ultrawideband MIMO antenna with polarization diversity," Progress In Electromagnetics Research C, Vol. 61, 149-159, 2016.

10. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3433-3441, Dec. 2007.
doi:10.1109/TAP.2007.910353

11. Yacoub, A., M. Khalifa, and D. N. Aloi, "Wide bandwidth low profile PIFA antenna for vehicular sub-6 GHz 5G and V2X wireless systems," Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021.
doi:10.2528/PIERC21010609

12. Kwon, O., R. Song, and B. Kim, "A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 600-603, Apr. 2018.
doi:10.1109/LAWP.2018.2805681

13. Kammakattu, S., P. Bora, M. Mudaliar, Y. Dhanade, and B. Madhav, "Linear array Yagi-Uda 5G antenna for vehicular application," International Journal of Engineering & Technology, Vol. 7, 513-517, 2017.

14. Franchina, V., et al., "A compact 3D antenna for automotive LTE MIMO applications," 2017 IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 326-329, Verona, 2017.

15. Hasturkoglu, S., M. Almarashli, and S. Lindenmeier, "A compact wideband terrestial MIMOantenna set for 4G, 5G, WLAN and V2X and evaluation of its LTE-performance in an urban region," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, Krakow, Poland, 2019.

16. Heiman, A., A. Badescu, and A. Saftoiu, "A new multiple input multiple output V2V automotive antenna for long term evolution band applications," 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), 1-5, Bucharest, Romania, 2018.

17. Guan, N., H. Tayama, M. Ueyama, Y. Yoshijima, and H. Chiba, "A roof automobile module for LTE-MIMO antennas," 2015 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 387-391, Turin, 2015.
doi:10.1109/APWC.2015.7300160

18. Thiel, A., L. Ekiz, O. Klemp, and M. Schultz, "Automotive grade MIMO antenna setup and performance evaluation for LTE-communications," 2013 International Workshop on Antenna Technology (iWAT), 171-174, Karlsruhe, 2013.

19. Demien, C. and R. Sarkis, "Design of shark fin integrated antenna systems for automotive applications," 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS-Spring), 620-627, Rome, Italy, 2019.

20. Song, H. J., et al., "Evaluation of vehicle-level MIMO antennas: Capacity, total embedded efficiency, and envelope correlation," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 89-92, Palm Beach, 2014.

21. Preradovic, D. and D. N. Aloi, "Cross polarized 2 × 2 LTE MIMO system for automotive shark fin application," The Applied Computational Electromagnetics Society (ACES), Vol. 35, No. 10, 1207-1216, Oct. 2020.
doi:10.47037/2020.ACES.J.351014

22. Jonah, O., "5G antenna for automotive applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1493-1494, 2020.
doi:10.1109/IEEECONF35879.2020.9330087

23. Potti, D., et al., "A novel optically transparent UWB antenna for automotive MIMO communications," IEEE Transactions on Antennas and Propagation, 2020.

24. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark-fin antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, Aug. 2019.
doi:10.1109/LAWP.2019.2927019