1. Din, N. M., C. K. Chakrabarty, A. Bin Ismail, K. K. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002 Google Scholar
2. El Badawe, M. and O. M. Ramahi, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.
doi:10.2528/PIER18011003 Google Scholar
3. Shen, S., Y. Zhang, C. Chiu, and R. Murch, "A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining," IEEE Transactions on Industrial Electronics, Vol. 67, No. 11, 9215-9226, 2020.
doi:10.1109/TIE.2019.2952819 Google Scholar
4. Du, Z. and X. Y. Zhang, "High-efficiency single- and dual-band rectifiers using a complex impedance compression network for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 65, No. 6, 5012-5022, 2018.
doi:10.1109/TIE.2017.2772203 Google Scholar
5. Donelli, M., P. Rocca, and F. Viani, "Design of a WPT system for the powering of wireless sensor nodes: Theoretical guidelines and experimental validation," Wireless Power Transfer, Vol. 3, No. 1, 15-23, 2016.
doi:10.1017/wpt.2015.20 Google Scholar
6. Liu, C., F. Tan, H. Zhang, and Q. He, "A novel single-diode microwave rectifier with a series band-stop structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 2, 600-606, 2017.
doi:10.1109/TMTT.2016.2626286 Google Scholar
7. Kawasaki, S., K. Ryoko, F. Yuki, N. Toshihiro, Y. Satoshi, N. Kenjiro, and S. Harunobu, "C-band energy harvester by Si RFICs with GaN diodes for microwave power transfer," 2017 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2017, 147-149, Seoul, South Korea, 2017. Google Scholar
8. Liu, Z., Z. Zhong, and Y. X. Guo, "Enhanced dual-band ambient RF energy harvesting with ultra-wide power range," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 9, 630-632, 2015.
doi:10.1109/LMWC.2015.2451397 Google Scholar
9. Niotaki, K., A. Georgiadis, and A. Collado, "Dual-band rectifier based on resistance compression networks," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 1-3, IEEE, Tampa, FL, USA, 2014. Google Scholar
10. Shariati, N., J. R. Scott, D. Schreurs, and K. Ghorbani, "Multitone excitation analysis in RF energy harvesters-considerations and limitations," IEEE Internet of Things Journal, Vol. 5, No. 4, 2804-2816, 2018.
doi:10.1109/JIOT.2018.2828978 Google Scholar
11. Zeng, Y., B. Clerckx, and R. Zhang, "Communications and signals design for wireless power transmission," IEEE Transactions on Communications, Vol. 65, No. 5, 2264-2290, 2017.
doi:10.1109/TCOMM.2017.2676103 Google Scholar
12. Henning, F. H., Transmission of Information by Orthogonal Functions, Vol. 87, No. 4, Springer, 2012.
13. Ross, G. F. and M. Lexington, "Transmission and reception system for generating and receiving base-band duration pulse signals for short base-band pulse communication system,", 912-914, 1973. Google Scholar
14. Albreem, M. A., "5G wireless communication systems: Vision and challenges," I4CT 2015 — 2015 2nd International Conference on Computer, Communications, and Control Technology, Art Proceeding, No. I4ct, 493-497, IEEE, Kuching, Sarawak, Malaysia, 2015. Google Scholar
15. Zheng, S., W. Liu, and Y. Pan, "Design of an ultra-wideband high-efficiency rectifier for wireless power transmission and harvesting applications," IEEE Transactions on Industrial Informatics, Vol. 15, No. 6, 3334-3342, 2019.
doi:10.1109/TII.2018.2874460 Google Scholar
16. Moulay, A. and T. Djerafi, "Multi-stage schottky diode power harvester for UWB application," IEEE Wireless Power Transfer Conference (WPTC), 8-11, Montreal, Canada, 2018. Google Scholar
17. Boaventura, A. S. and N. B. Carvalho, "Maximizing DC power in energy harvesting circuits using multisine excitation," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, No. 1, 1-4, Baltimore, MD, USA, 2011. Google Scholar
18. Bahl, I. J., Fundamentals of RF and Microwave Transistor Amplifiers, John Wiley & Sons, Hoboken, New Jersey, 2009.
19. Jose Carlos, P. and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits, Artech House, 2003.
20. Skyworks "SM76XX Datasheet. Surface mount mixer and detector Schottky diodes," Tech. Rep., Skyworks, 2015. Google Scholar
21. Yang, Y. L., C. L. Tsai, C. W. Yang, and C. L. Yang, "Using pulse width and waveform modulation to enhance power conversion efficiency under constraint of low input power," Asia-Pacific Microwave Conference Proceedings, 400-402, APMC, 2012. Google Scholar
22. Metivier, R., "Method for converting a PWM output to an analog output when using hall-effect sensor ICs," Allegro MicroSystems, No. 296094-AN, 2013. Google Scholar
23. Sinar, D. and G. Knopf, "Printed graphene derivative circuits as passive electrical filters," Nanomaterials, Vol. 8, No. 2, 123, 2018.
doi:10.3390/nano8020123 Google Scholar