Vol. 113
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-06-16
Human Multicomponent Micro-Doppler Signals Separation Based on a Novel Local Time-Frequency Sparse Reconstruction Method
By
Progress In Electromagnetics Research C, Vol. 113, 137-146, 2021
Abstract
The use of radar micro-Doppler (m-D) signatures for human activities classification, surveillance and healthcare has become a hot topic in recent years. While m-D signals are always multicomponent, it is necessary to separate them into mono-components signals associated with individual body parts for easier features analysis and extraction. In this paper, a novel method called local time-frequency sparse reconstruction (LTFSR) is proposed to iteratively extract and separate m-D components one by one in a descending intensity order from a time-frequency (T-F) representation. For the current strongest m-D component, we first estimate its instantaneous frequency (IF) by dividing the signal into short overlapping time intervals and selecting the best matching chirp atom to approximate the local frequency in each time interval based on matching pursuit. Then, a T-F filtering is used to extract and remove the strongest component from the multicomponent signal. Repeat the above steps until all m-D components are separated. Simulations are given to validate the effectiveness and robustness of the proposed method.
Citation
Zhongfei Ni, and Bin-Ke Huang, "Human Multicomponent Micro-Doppler Signals Separation Based on a Novel Local Time-Frequency Sparse Reconstruction Method," Progress In Electromagnetics Research C, Vol. 113, 137-146, 2021.
doi:10.2528/PIERC21041202
References

1. Chen, V. C., "Doppler signatures of radar backscattering from objects with micro-motions," IET Signal Processing, Vol. 2, No. 3, 291-300, 2008.
doi:10.1049/iet-spr:20070137

2. Narayanan, R. M. and M. Zenaldin, "Radar micro-Doppler signatures of various human activities," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1205-1215, 2015.
doi:10.1049/iet-rsn.2015.0173

3. Kim, Y. and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1328-1337, 2009.
doi:10.1109/TGRS.2009.2012849

4. Ricci, R. and A. Balleri, "Recognition of humans based on radar micro-Doppler shape spectrum features," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1216-1223, 2015.
doi:10.1049/iet-rsn.2014.0551

5. Du, H., T. Jin, Y. Song, and Y. Dai, "Unsupervised adversarial domain adaptation for micro-Doppler based human activity classification," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 1, 62-66, 2019.
doi:10.1109/LGRS.2019.2917301

6. Kim, Y. and T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 1, 8-12, 2015.
doi:10.1109/LGRS.2015.2491329

7. Park, J., R. Javier, T. Moon, and Y. Kim, "Micro-Doppler based classification of human aquatic activities via transfer learning of convolutional neural networks," Sensors, Vol. 16, No. 12, 1990, 2016.
doi:10.3390/s16121990

8. Li, X., Y. He, and X. Jing, "A survey of deep learning-based human activity recognition in radar," Remote Sensing, Vol. 11, No. 9, 1068, 2019.
doi:10.3390/rs11091068

9. Seifert, A.-K., A. M. Zoubir, and M. G. Amin, "Radar classification of human gait abnormality based on sum-of-harmonics analysis," 2018 IEEE Radar Conference (RadarConf18), 0940-0945, IEEE, 2018.
doi:10.1109/RADAR.2018.8378687

10. Seifert, A.-K., M. Amin, and A. M. Zoubir, "Toward unobtrusive in-home gait analysis based on radar micro-Doppler signatures," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2629-2640, 2019.
doi:10.1109/TBME.2019.2893528

11. Bjorklund, S., H. Petersson, and G. Hendeby, "On distinguishing between human individuals in micro-Doppler signatures," 2013 14th International Radar Symposium (IRS), Vol. 2, 865-870, IEEE, 2013.

12. Zenaldin, M. and R. M. Narayanan, "Features associated with radar micro-Doppler signatures of various human activities," Radar Sensor Technology XIX; and Active and Passive Signatures VI, Vol. 9461, 94611D, International Society for Optics and Photonics, 2015.

13. Cao, P., W. Xia, M. Ye, J. Zhang, and J. Zhou, "Radar-ID: Human identification based on radar micro-Doppler signatures using deep convolutional neural networks," IET Radar, Sonar and Navigation, Vol. 12, No. 7, 729-734, 2018.
doi:10.1049/iet-rsn.2017.0511

14. Yang, Y., C. Hou, Y. Lang, G. Yue, Y. He, and W. Xiang, "Person identification using micro-Doppler signatures of human motions and UWB radar," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 5, 366-368, 2019.
doi:10.1109/LMWC.2019.2907547

15. Fogle, O. R. and B. D. Rigling, "Micro-range/micro-Doppler decomposition of human radar signatures," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, 3058-3072, 2012.
doi:10.1109/TAES.2012.6324677

16. Abdulatif, S., F. Aziz, B. Kleiner, and U. Schneider, "Real-time capable micro-Doppler signature decomposition of walking human limbs," 2017 IEEE Radar Conference (RadarConf), 1093-1098, IEEE, 2017.
doi:10.1109/RADAR.2017.7944367

17. He, Y., P. Molchanov, T. Sakamoto, P. Aubry, F. Le Chevalier, and A. Yarovoy, "Range-Doppler surface: A tool to analyse human target in ultra-wideband radar," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1240-1250, 2015.
doi:10.1049/iet-rsn.2015.0065

18. Ding, Y. and J. Tang, "Micro-Doppler trajectory estimation of pedestrians using a continuous-wave radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, 5807-5819, 2014.
doi:10.1109/TGRS.2013.2292826

19. Shi, X., F. Zhou, M. Tao, and Z. Zhang, "Human movements separation based on principal component analysis," IEEE Sensors Journal, Vol. 16, No. 7, 2017-2027, 2015.
doi:10.1109/JSEN.2015.2509185

20. Quaiyum, F., N. Tran, J. E. Piou, O. Kilic, and A. E. Fathy, "Noncontact human gait analysis and limb joint tracking using Doppler radar," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 3, No. 1, 61-70, 2018.
doi:10.1109/JERM.2018.2881238

21. Li, W., G. Kuang, and B. Xiong, "Decomposition of multicomponent micro-Doppler signals based on HHT-AMD," Applied Sciences, Vol. 8, No. 10, 1801, 2018.
doi:10.3390/app8101801

22. Qiao, X., T. Shan, R. Tao, X. Bai, and J. Zhao, "Separation of human micro-Doppler signals based on short-time fractional fourier transform," IEEE Sensors Journal, Vol. 19, No. 24, 12205-12216, 2019.
doi:10.1109/JSEN.2019.2937989

23. Mallat, S. G. and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, 1993.
doi:10.1109/78.258082

24. Zhang, H., L. Yu, and G.-S. Xia, "Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation," IEEE Signal Processing Letters, Vol. 23, No. 1, 139-143, 2015.
doi:10.1109/LSP.2015.2504565

25. Shell, M., "Carnegie mellon university motion capture database,", 2012.