1. Chen, V. C., "Doppler signatures of radar backscattering from objects with micro-motions," IET Signal Processing, Vol. 2, No. 3, 291-300, 2008.
doi:10.1049/iet-spr:20070137 Google Scholar
2. Narayanan, R. M. and M. Zenaldin, "Radar micro-Doppler signatures of various human activities," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1205-1215, 2015.
doi:10.1049/iet-rsn.2015.0173 Google Scholar
3. Kim, Y. and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1328-1337, 2009.
doi:10.1109/TGRS.2009.2012849 Google Scholar
4. Ricci, R. and A. Balleri, "Recognition of humans based on radar micro-Doppler shape spectrum features," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1216-1223, 2015.
doi:10.1049/iet-rsn.2014.0551 Google Scholar
5. Du, H., T. Jin, Y. Song, and Y. Dai, "Unsupervised adversarial domain adaptation for micro-Doppler based human activity classification," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 1, 62-66, 2019.
doi:10.1109/LGRS.2019.2917301 Google Scholar
6. Kim, Y. and T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 1, 8-12, 2015.
doi:10.1109/LGRS.2015.2491329 Google Scholar
7. Park, J., R. Javier, T. Moon, and Y. Kim, "Micro-Doppler based classification of human aquatic activities via transfer learning of convolutional neural networks," Sensors, Vol. 16, No. 12, 1990, 2016.
doi:10.3390/s16121990 Google Scholar
8. Li, X., Y. He, and X. Jing, "A survey of deep learning-based human activity recognition in radar," Remote Sensing, Vol. 11, No. 9, 1068, 2019.
doi:10.3390/rs11091068 Google Scholar
9. Seifert, A.-K., A. M. Zoubir, and M. G. Amin, "Radar classification of human gait abnormality based on sum-of-harmonics analysis," 2018 IEEE Radar Conference (RadarConf18), 0940-0945, IEEE, 2018.
doi:10.1109/RADAR.2018.8378687 Google Scholar
10. Seifert, A.-K., M. Amin, and A. M. Zoubir, "Toward unobtrusive in-home gait analysis based on radar micro-Doppler signatures," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2629-2640, 2019.
doi:10.1109/TBME.2019.2893528 Google Scholar
11. Bjorklund, S., H. Petersson, and G. Hendeby, "On distinguishing between human individuals in micro-Doppler signatures," 2013 14th International Radar Symposium (IRS), Vol. 2, 865-870, IEEE, 2013. Google Scholar
12. Zenaldin, M. and R. M. Narayanan, "Features associated with radar micro-Doppler signatures of various human activities," Radar Sensor Technology XIX; and Active and Passive Signatures VI, Vol. 9461, 94611D, International Society for Optics and Photonics, 2015. Google Scholar
13. Cao, P., W. Xia, M. Ye, J. Zhang, and J. Zhou, "Radar-ID: Human identification based on radar micro-Doppler signatures using deep convolutional neural networks," IET Radar, Sonar and Navigation, Vol. 12, No. 7, 729-734, 2018.
doi:10.1049/iet-rsn.2017.0511 Google Scholar
14. Yang, Y., C. Hou, Y. Lang, G. Yue, Y. He, and W. Xiang, "Person identification using micro-Doppler signatures of human motions and UWB radar," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 5, 366-368, 2019.
doi:10.1109/LMWC.2019.2907547 Google Scholar
15. Fogle, O. R. and B. D. Rigling, "Micro-range/micro-Doppler decomposition of human radar signatures," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, 3058-3072, 2012.
doi:10.1109/TAES.2012.6324677 Google Scholar
16. Abdulatif, S., F. Aziz, B. Kleiner, and U. Schneider, "Real-time capable micro-Doppler signature decomposition of walking human limbs," 2017 IEEE Radar Conference (RadarConf), 1093-1098, IEEE, 2017.
doi:10.1109/RADAR.2017.7944367 Google Scholar
17. He, Y., P. Molchanov, T. Sakamoto, P. Aubry, F. Le Chevalier, and A. Yarovoy, "Range-Doppler surface: A tool to analyse human target in ultra-wideband radar," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1240-1250, 2015.
doi:10.1049/iet-rsn.2015.0065 Google Scholar
18. Ding, Y. and J. Tang, "Micro-Doppler trajectory estimation of pedestrians using a continuous-wave radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, 5807-5819, 2014.
doi:10.1109/TGRS.2013.2292826 Google Scholar
19. Shi, X., F. Zhou, M. Tao, and Z. Zhang, "Human movements separation based on principal component analysis," IEEE Sensors Journal, Vol. 16, No. 7, 2017-2027, 2015.
doi:10.1109/JSEN.2015.2509185 Google Scholar
20. Quaiyum, F., N. Tran, J. E. Piou, O. Kilic, and A. E. Fathy, "Noncontact human gait analysis and limb joint tracking using Doppler radar," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 3, No. 1, 61-70, 2018.
doi:10.1109/JERM.2018.2881238 Google Scholar
21. Li, W., G. Kuang, and B. Xiong, "Decomposition of multicomponent micro-Doppler signals based on HHT-AMD," Applied Sciences, Vol. 8, No. 10, 1801, 2018.
doi:10.3390/app8101801 Google Scholar
22. Qiao, X., T. Shan, R. Tao, X. Bai, and J. Zhao, "Separation of human micro-Doppler signals based on short-time fractional fourier transform," IEEE Sensors Journal, Vol. 19, No. 24, 12205-12216, 2019.
doi:10.1109/JSEN.2019.2937989 Google Scholar
23. Mallat, S. G. and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, 1993.
doi:10.1109/78.258082 Google Scholar
24. Zhang, H., L. Yu, and G.-S. Xia, "Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation," IEEE Signal Processing Letters, Vol. 23, No. 1, 139-143, 2015.
doi:10.1109/LSP.2015.2504565 Google Scholar
25. Shell, M., "Carnegie mellon university motion capture database,", 2012. Google Scholar