1. Chen, V. C., "Doppler signatures of radar backscattering from objects with micro-motions," IET Signal Processing, Vol. 2, No. 3, 291-300, 2008.
doi:10.1049/iet-spr:20070137
2. Narayanan, R. M. and M. Zenaldin, "Radar micro-Doppler signatures of various human activities," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1205-1215, 2015.
doi:10.1049/iet-rsn.2015.0173
3. Kim, Y. and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1328-1337, 2009.
doi:10.1109/TGRS.2009.2012849
4. Ricci, R. and A. Balleri, "Recognition of humans based on radar micro-Doppler shape spectrum features," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1216-1223, 2015.
doi:10.1049/iet-rsn.2014.0551
5. Du, H., T. Jin, Y. Song, and Y. Dai, "Unsupervised adversarial domain adaptation for micro-Doppler based human activity classification," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 1, 62-66, 2019.
doi:10.1109/LGRS.2019.2917301
6. Kim, Y. and T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 1, 8-12, 2015.
doi:10.1109/LGRS.2015.2491329
7. Park, J., R. Javier, T. Moon, and Y. Kim, "Micro-Doppler based classification of human aquatic activities via transfer learning of convolutional neural networks," Sensors, Vol. 16, No. 12, 1990, 2016.
doi:10.3390/s16121990
8. Li, X., Y. He, and X. Jing, "A survey of deep learning-based human activity recognition in radar," Remote Sensing, Vol. 11, No. 9, 1068, 2019.
doi:10.3390/rs11091068
9. Seifert, A.-K., A. M. Zoubir, and M. G. Amin, "Radar classification of human gait abnormality based on sum-of-harmonics analysis," 2018 IEEE Radar Conference (RadarConf18), 0940-0945, IEEE, 2018.
doi:10.1109/RADAR.2018.8378687
10. Seifert, A.-K., M. Amin, and A. M. Zoubir, "Toward unobtrusive in-home gait analysis based on radar micro-Doppler signatures," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2629-2640, 2019.
doi:10.1109/TBME.2019.2893528
11. Bjorklund, S., H. Petersson, and G. Hendeby, "On distinguishing between human individuals in micro-Doppler signatures," 2013 14th International Radar Symposium (IRS), Vol. 2, 865-870, IEEE, 2013.
12. Zenaldin, M. and R. M. Narayanan, "Features associated with radar micro-Doppler signatures of various human activities," Radar Sensor Technology XIX; and Active and Passive Signatures VI, Vol. 9461, 94611D, International Society for Optics and Photonics, 2015.
13. Cao, P., W. Xia, M. Ye, J. Zhang, and J. Zhou, "Radar-ID: Human identification based on radar micro-Doppler signatures using deep convolutional neural networks," IET Radar, Sonar and Navigation, Vol. 12, No. 7, 729-734, 2018.
doi:10.1049/iet-rsn.2017.0511
14. Yang, Y., C. Hou, Y. Lang, G. Yue, Y. He, and W. Xiang, "Person identification using micro-Doppler signatures of human motions and UWB radar," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 5, 366-368, 2019.
doi:10.1109/LMWC.2019.2907547
15. Fogle, O. R. and B. D. Rigling, "Micro-range/micro-Doppler decomposition of human radar signatures," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, 3058-3072, 2012.
doi:10.1109/TAES.2012.6324677
16. Abdulatif, S., F. Aziz, B. Kleiner, and U. Schneider, "Real-time capable micro-Doppler signature decomposition of walking human limbs," 2017 IEEE Radar Conference (RadarConf), 1093-1098, IEEE, 2017.
doi:10.1109/RADAR.2017.7944367
17. He, Y., P. Molchanov, T. Sakamoto, P. Aubry, F. Le Chevalier, and A. Yarovoy, "Range-Doppler surface: A tool to analyse human target in ultra-wideband radar," IET Radar, Sonar and Navigation, Vol. 9, No. 9, 1240-1250, 2015.
doi:10.1049/iet-rsn.2015.0065
18. Ding, Y. and J. Tang, "Micro-Doppler trajectory estimation of pedestrians using a continuous-wave radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, 5807-5819, 2014.
doi:10.1109/TGRS.2013.2292826
19. Shi, X., F. Zhou, M. Tao, and Z. Zhang, "Human movements separation based on principal component analysis," IEEE Sensors Journal, Vol. 16, No. 7, 2017-2027, 2015.
doi:10.1109/JSEN.2015.2509185
20. Quaiyum, F., N. Tran, J. E. Piou, O. Kilic, and A. E. Fathy, "Noncontact human gait analysis and limb joint tracking using Doppler radar," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 3, No. 1, 61-70, 2018.
doi:10.1109/JERM.2018.2881238
21. Li, W., G. Kuang, and B. Xiong, "Decomposition of multicomponent micro-Doppler signals based on HHT-AMD," Applied Sciences, Vol. 8, No. 10, 1801, 2018.
doi:10.3390/app8101801
22. Qiao, X., T. Shan, R. Tao, X. Bai, and J. Zhao, "Separation of human micro-Doppler signals based on short-time fractional fourier transform," IEEE Sensors Journal, Vol. 19, No. 24, 12205-12216, 2019.
doi:10.1109/JSEN.2019.2937989
23. Mallat, S. G. and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, 1993.
doi:10.1109/78.258082
24. Zhang, H., L. Yu, and G.-S. Xia, "Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation," IEEE Signal Processing Letters, Vol. 23, No. 1, 139-143, 2015.
doi:10.1109/LSP.2015.2504565
25. Shell, M., "Carnegie mellon university motion capture database,", 2012.