Vol. 115
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-24
Performance Optimization of Dual-Feed UWB Annular Ring Antenna with Circular DGS and EBG for SAR Reduction
By
Progress In Electromagnetics Research C, Vol. 115, 51-64, 2021
Abstract
The article presents the design of an Ultra-Wideband (UWB) annular ring antenna which operates over 1.5 GHz to 12 GHz and covers most of the bands of mobile communication (GSM 1800, 1900 and 2100, UMTS, Bluetooth (2.4 GHz), WLAN 2.4/3.5/5 GHz and WiMAX 2.5/3.5/5.5 GHz). The antenna size is 40 x 36.67 x 1.6 mm3, and an FR-4 substrate of permittivity 4.3 with loss tangent of 0.025 is used for fabrication. Circular defect in ground plane of annular ring is used to achieve UWB characteristics. A wideband mushroom type Electromagnetic Band Gap (EBG) unit cell is designed which resonates at 2.3 GHz, and 8-unit cells are placed close to feeds of annular ring patch where current density is more for 2.4 GHz so as to reduce surface waves and ultimately to lower Specific Absorption Rate (SAR). SAR is evaluated with dual-feeds for single element and is lowered up to 83.64% for 1-gram of tissue mass.
Citation
Mahesh Munde Anil Nandgaonkar Shankar Deosarkar , "Performance Optimization of Dual-Feed UWB Annular Ring Antenna with Circular DGS and EBG for SAR Reduction," Progress In Electromagnetics Research C, Vol. 115, 51-64, 2021.
doi:10.2528/PIERC21042402
http://www.jpier.org/PIERC/pier.php?paper=21042402
References

1. Campbell, D. and C. J. Reddy, "Antenna design considerations for LTE enabled tablets," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1140-1141, Vancouver, BC, 2015.
doi:

504 Gateway Time-out


2. US Federal Communication Commission, Office of Engineering and Technology, "Evaluating compliance with FCC-specified guidelines for human exposure to radio radiofrequency radiation," OET Bulletin 65, Washington, DC, 1997.
doi:The server didn't respond in time.

3. Institute of Electrical and Electronic Engineers (IEEE), IEEE C95.1-2005, Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, IEEE Press, New York, 2005.
doi:

4. International Commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, 494-522, 1998.

5. Zhao, K., S. Zhang, Z. Ying, T. Bolin, and S. He, "SAR study of different MIMO antenna designs for LTE application in smart mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3270-3279, Jun. 2013.

6. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.

7. Zhu, Y., A. Bossavit, and S. Zouhdi, "Surface impedance models for high impedance surfaces," Appl. Phys. A, Vol. 103, 677-683, 2011.

8. Sarrazin, J., A. C. Lepage, and X. Begaud, "Dual-band artificial magnetic conductor," Appl. Phys. A, Vol. 109, 1075-1080, 2012.

9. Sarrazin, J., A. Lepage, and X. Begaud, "Circular high-impedance surfaces characterization," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 260-263, 2012.

10. Linot, F., R. Cousin, X. Begaud, and M. Soiron, "Design and measurement of high impedance surface," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, Barcelona, 2010.

11. Alam, T., M. Faruque, and M. Islam, "Printed circular patch wideband antenna for wireless communication," Informacije Midem Journal of Microelectronics Electronic Components and Materials, Vol. 44, 212-217, 2014.

12. Alam, T., et al., "Specific Absorption Rate (SAR) analysis using plastic substrate based negative indexed metamaterial shielding," 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), 619-622, Cox's Bazar, 2017.

13. Lee, H. and W. Choi, "Effect of partial ground plane removal on the radiation characteristics of a microstrip antenna," Wireless Engineering and Technology, Vol. 4, No. 1, 5-12, 2013.

14. Nashaat, D., H. Elsadek, E. Abdallah, H. Elhenawy, and M. F. Iskander, "Multiband and miniaturized inset feed microstrip patch antenna using multiple spiral-shaped defect ground structure (DGS)," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, Charleston, SC, 2009.

15. Elsheakh, D., H. Elsadek, E. Abdallah, M. Iskander, and H. El-Hennawy, "Investigated new embedded shapes of electromagnetic bandgap structures and via effect for improved microstrip patch antenna performance," Progress In Electromagnetics Research B, Vol. 20, 91-107, 2010.

16. Prakash, P., M. P. Abegaonkar, L. Kurra, A. Basu, and S. K. Koul, "Compact Electromagnetic Bandgap (EBG) structure with defected ground," IETE Journal of Research, Vol. 62, No. 1, 120-126, 2016.

17. Sultan, K., H. Abdullah, E. Abdallah, and E. Hashish, "Low SAR, compact and multiband antenna for mobile and wireless communication," The 2nd Middle East Conference on Antennas and Propagation, 1-5, Cairo, 2012.

18. Sultan, K., H. Abdullah, and E. Abdallah, "Low SAR, simple printed compact multiband antenna for mobile and wireless communication applications," International Journal of Antennas and Propagation, Vol. 2014, 1-9, 2014.

19. Ashyap, A. Y. I., et al., "Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications," IEEE Access, Vol. 8, 56346-56358, 2020.

20. Chew, W., "A broad-band annular-ring microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 918-922, Sept. 1982.

21. El-khamy, S., R. El-Awadi, and E. A. El-Sharrawy, "Simple analysis and design of annular ring microstrip antennas," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 133, No. 3, 198-202, 1986.

22. Rawat, S. and K. Sharma, "Annular ring microstrip patch antenna with finite ground plane for ultra-wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 7, No. 2, 179-184, 2015.

23. Antonino-Daviu, E., M. Cabedo-Fabres, M. Ferrando-Bataller, and A. Valero-Nogueira, "Wideband double-fed planar monopole antennas," Electronics Letters, Vol. 39, No. 23, 1635-1636, Nov. 2003.

24. Munde, M., A. Nandgaonkar, and S. Deosarkar, "Dual feed wideband annular ring microstrip antenna with circular DGS for reduced SAR," Progress In Electromagnetics Research B, Vol. 88, 175-195, 2020.

25. Munde, M, A. Nandgaonkar, and S. Deosarkar, "Low specific absorption rate antenna using electromagnetic band gap structure for long term evolution band 3 application," Progress In Electromagnetics Research M, Vol. 80, 23-34, 2019.

26. Garg, R., Microstrip Antenna Design Handbook, Boston, Artech House, 2001.

27. Balanis, C., Antenna Theory: Analysis and Design, Wiley India, New-Delhi, Reprint, 2016.

28. ITIS Foundation, "Dielectric properties of body tissues,", https://itis.swiss/virtual-population/tissue-properties/ database/dielectric-properties.

29. Faruque, M. R. I., M. I. Hossain, N. Misran, M. Singh, and M. T. Islam, "Metamaterial-embedded Low SAR PIFA for cellular phone," PLoS ONE, Vol. 10, No. 11, e0142663, 2015.

30. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, New York, 2009.

31. Saleh, G., K. Solbach, and A. Rennings, "EBG structure for low frequency applications," The 7th German Microwave Conference, 1-4, Ilmenau, 2012.

32. Ahmed, M. I., M. F. Ahmed, and A. H. A. Shaalan, "SAR calculations of novel wearable fractal antenna on metamaterial cell for search and rescue applications," Progress In Electromagnetics Research M, Vol. 53, 99-110, 2017.

33. Wang, M. and et al, "Investigation of SAR reduction using exible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, Jun. 2018.

34. Badugu, P., M. Boddapati, S. Munuswamy, A. Tirunagari, V. Manikonda, and V. Poluri, "Windmill-shaped antenna with artificial magnetic conductor-backed structure for wearable medical applications," Int. J. Number Model El., Vol. 33, e2757, 2020.

35. Rosaline, S. I., "A triple-band antenna with a metamaterial slab for gain enhancement and Specific Absorption Rate (SAR) reduction," Progress In Electromagnetics Research C, Vol. 109, 275-287, 2021.

36. Imran, A. I., T. A. Elwi, and A. J. Salim, "On the distortionless of UWB wearable hilbert-shaped metamaterial antenna for low energy applications," Progress In Electromagnetics Research M, Vol. 101, 219-239, 2021.

37. Mahmood, S. N., A. J. Ishak, T. Saeidi, A. C. Soh, A. Jalal, M. A. Imran, and Q. H. Abbasi, "Full ground ultra-wideband wearable textile antenna for breast cancer and wireless body area network applications," Micromachines (Basel), Vol. 12, No. 3, 322, Mar. 19, 2021.