Vol. 114
Latest Volume
All Volumes
2021-08-09
Multilayered Implantable Antenna Biosensor for Continuous Glucose Monitoring: Design and Analysis
By
Progress In Electromagnetics Research C, Vol. 114, 173-184, 2021
Abstract
This article reports a multilayer implantable biosensor for a continuous glucose monitoring system, tested on rats to determine the relationship between intravenous glucose level and resonance frequency of implant antenna sensor. An implantable antenna sensor with the volume 330.9 mm3 is tested in three rats as an animal model. This antenna biosensor operates in the Medical Implant Communication Service frequency band (402-405 MHz) with the simulated and measured maximum gains of -13.33 and -21.1 dB, respectively. The specific absorption rate obtained is within the standard limits. An oral glucose tolerance test is proposed to obtain the variation in blood glucose level in the animal's body during measurement. The resonance frequency shift and the corresponding blood glucose level are observed at a regular interval of 30 minutes. A frequency shift of 4.94 kHz per mg/dL is observed. Also, the results related to the reflection coefficient and the factors affecting sensor performance are discussed. The biosensor performance is validated using the proposed simple linear regression model.
Citation
Rahul B. Khadase, Anil Nandgaonkar, Brijesh Iyer, and Abhay E. Wagh, "Multilayered Implantable Antenna Biosensor for Continuous Glucose Monitoring: Design and Analysis," Progress In Electromagnetics Research C, Vol. 114, 173-184, 2021.
doi:10.2528/PIERC21052203
References

1. Williams, R., S. Karuranga, B. Malanda, P. Saeedi, A. Basit, S. Besancon, C. Bommer, et al. "Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas," Diabetes Research and Clinical Practice, Vol. 162, 108072, 2020.
doi:10.1016/j.diabres.2020.108072

2. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3064-3075, 2014.
doi:10.1109/TAP.2014.2313139

3. Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeris, "A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 577-580, 2016.

4. Hassan, R. S., J. Lee, and S. Kim, "A minimally invasive implantable sensor for continuous wireless glucose monitoring based on a passive resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 124-128, 2019.
doi:10.1109/LAWP.2019.2955176

5. Camli, B., E. Kusakci, B. Lafci, S. Salman, H. Torun, and A. D. Yalcinkaya, "Cost-effective, microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 2, 404-409, 2017.
doi:10.1109/JSTQE.2017.2659226

6. Afroz, S., S. W. Thomas, G. Mumcu, and S. E. Saddow, "Implantable SiC based RF antenna biosensor for continuous glucose monitoring," 2013 IEEE SENSORS, 1-4, IEEE, 2013.

7. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

8. Kiourti, A., K. A. Psathas, P. Lelovas, N. Kostomitsopoulos, and K. S. Nikita, "In vivo tests of implantable antennas in rats: Antenna size and intersubject considerations," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1396-1399, 2013.
doi:10.1109/LAWP.2013.2286818

9. Liu, C., Y.-X. Guo, R. Jegadeesan, and S. Xiao, "In vivo testing of circularly polarized implantable antennas in rats," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 783-786, 2014.

10. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges," Bioelectromagnetics, Vol. 35, No. 1, 1-15, 2014.
doi:10.1002/bem.21813

11. Garcia Miquel, A., S. Curto, N. V. Martínez, J. M. L. Villegas, F. M. Ramos, and P. Prakash, "Multilayered broadband antenna for compact embedded implantable medical devices: Design and characterization," Progress In Electromagnetics Research, Vol. 159, 1-13, 2017.
doi:10.2528/PIER16121507

12. Djellid, A., L. Pichon, K. Stavros, and F. Bouttout, "Miniaturization of a PIFA antenna for biomedical applications using artificial neural networks," Progress In Electromagnetics Research M, Vol. 70, 1-10, 2018.
doi:10.2528/PIERM18032705

13. Luan, Z., L. Liu, W.-H. Zong, Z. Jin, and S. Li, "Design of an implantable antenna operating at ISM band using magneto-dielectric material," Progress In Electromagnetics Research Letters, Vol. 82, 65-72, 2019.
doi:10.2528/PIERL18111202

14. Saha, P., D. Mitra, and S. K. Parui, "A circularly polarised implantable monopole antenna for biomedical applications," Progress In Electromagnetics Research C, Vol. 85, 167-175, 2018.
doi:10.2528/PIERC18051807

15. Sreenivas, C. and S. Laha, "Compact continuous non-invasive blood glucose monitoring using bluetooth," 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4, IEEE, 2019.

16. Omer, A. E., S. Gigoyan, G. Shaker, and S. Safavi-Naeini, "WGM-based sensing of characterized glucose-aqueous solutions at mm-waves," IEEE Access, Vol. 8, 38809-38825, 2020.
doi:10.1109/ACCESS.2020.2975805

17. Ribet, F., G. Stemme, and N. Roxhed, "Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system," Biomedical Microdevices, Vol. 20, No. 4, 1-10, 2018.
doi:10.1007/s10544-018-0349-6

18. Nguyen, V. H., A. Diallo, P. L. Thuc, R. Staraj, S. Lanteri, and G. F. Carle, "A miniature implanted antenna for UHF RFID applications," Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020.
doi:10.2528/PIERC19102905

19. Villena Gonzales, W., A. T. Mobashsher, and A. Abbosh, "The progress of glucose monitoring --- A review of invasive to minimally and non-invasive techniques, devices and sensors," Sensors, Vol. 19, No. 4, 800, 2019.
doi:10.3390/s19040800

20. IEEE Standards Coordinating Committee, 28, "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz," IEEE C95. 1-1991, 1992.