1. Wu, Z., V. Park, and J. Li, "Enabling device to device broadcast for LTE cellular networks," IEEE Journal on Selected Areas in Communications, Vol. 34, No. 1, 58-70, 2016.
doi:10.1109/JSAC.2015.2452585 Google Scholar
2. Qiao, J., X. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, "Enabling device-to-device communications in millimeter-wave 5G cellular networks," IEEE Communications Magazine, Vol. 53, No. 1, 209-215, 2015.
doi:10.1109/MCOM.2015.7010536 Google Scholar
3. Feng, D., L. Lu, Y. Yuan-Wu, G. Y. Li, S. Li, and G. Feng, "Device-to-device communications in cellular networks," IEEE Communications Magazine, Vol. 52, No. 4, 49-55, 2014.
doi:10.1109/MCOM.2014.6807946 Google Scholar
4. Rysavy Research/5G Americas, , LTE to 5G, August 2018. [Online]. Available: http://www.5gamericas.org/files/4915/3479/4684/2018_5G_Americas_Rysavy_LTE_to_5G-The_Global_Impact_of_Wireless_Innovation_final.pdf.
5. Doppler, K., M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, "Device-to-device communication as an underlay to LTE-advanced networks," IEEE Communications Magazine, Vol. 47, No. 12, 42-49, 2009.
doi:10.1109/MCOM.2009.5350367 Google Scholar
6. Rubio-Drosdov, E., D. Diaz-Sanchez, F. Almenarez, P. Arias-Cabarcos, and A. Marin, "Seamless human-device interaction in the internet of things," IEEE Transactions on Consumer Electronics, Vol. 63, No. 4, 490-498, 2017.
doi:10.1109/TCE.2017.015076 Google Scholar
7. Bello, O. and S. Zeadally, "Intelligent device-to-device communication in the internet of things," IEEE Systems Journal, Vol. 10, No. 3, 1172-1182, 2016.
doi:10.1109/JSYST.2014.2298837 Google Scholar
8. Voicendata Bureau, , Voice & data, August 14, 2018. [Online]. Available: https://www.voicendata.com/5g-will-gateway-new-technologies-services-applications/.
9. Kassem, M. M. and M. K. Marina, "Future wireless spectrum below 6 GHz: A UK perspective," 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Stockholm, Sweden, 2015. Google Scholar
10. ITU R, , Agenda and Relevant Resolutions WRC-19, August 15, 2017. [Online]. Available: http://handle.itu.int/11.1002/pub/80f52158-en.
11. Kavanagh, S., 5G.CO.UK, 2019. [Online]. Available: https://5g.co.uk/guides/4g-versus-5g-what-will-the-next-generation-bring/.
12. ITU, , Fixed service use and future trends, November 2017. [Online]. Available: https://www.itu.int/pub/R-REP-F.2323.
13. GSM Association, , GSMA, September 2018. [Online]. Available: https://www.gsma.comspectrum/wp-content/uploads/2019/04/Mobile-Backhaul-Options.pdf.
14. Anzaldo, D., Backhaul alternatives for 4G/5G, 2014. [Online]. Available: https://pdfserv.maximintegrated.com/en/an/AN6544.pdf.
15. Pozar, M. D., Microwave Engineering, 4th Ed., John Wiley & Sons, Inc., 2012.
16. Balanis, C. A., Antenna Theory Analysis and Design, A John Wiley and Sons, Inc., 2005.
17. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.
18. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
19. Dildar, H., F. Althobiani, I. Ahmad, W. Khan, S. Ullah, N. Mufti, S. Ullah, F. Muhammad, M. Irfan, and A. Glowacz, "Design and experimental analysis of multiband frequency reconfigurable antenna for 5G and sub-6 GHz wireless communication," Micromachines, Vol. 12, No. 1, 32, 2021.
doi:10.3390/mi12010032 Google Scholar
20. Desai, A., R. Patel, T. Upadhyaya, H. Kaushal, and V. Dhasarathan, "Multi-band inverted E and U shaped compact antenna for Digital broadcasting, wireless, and sub 6 GHz 5G applications," International Journal of Electronics and Communications (AEU), Vol. 123, 153296, August 2020.
doi:10.1016/j.aeue.2020.153296 Google Scholar
21. Jabar, A. A. S. A. and D. K. Naji, "Design of miniaturized quad-band dual-arm spiral patch antenna for RFID, WLAN and WiMAX applications," Progress In Electromagnetics Research C, Vol. 91, 97-113, 2019.
doi:10.2528/PIERC19011706 Google Scholar
22. Roobini, A. and B. Sreeja, "Design and analysis of single element multiple feed antenna for wide band dual polarisation applications," International Journal of Pure and Applied Mathematics, Vol. 118, 1-12, 2018. Google Scholar
23. Upadhyay, G., N. Kishore, S. Raj, S. Tripathi, and V. S. Tripathi, "Dual-feed CSRR-loaded switchable multi-band microstrip patch antenna for ITS applications," IET Microwaves, Antennas & Propagation, Vol. 12, 2135-2140, 2018.
doi:10.1049/iet-map.2018.5269 Google Scholar
24. Upadhyay, G. and V. S. Tripathi, "Pin-diode based switchable multi-band dual feed microstrip patch antenna," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1454-1460, 2016.
doi:10.1002/mop.30563 Google Scholar
25. IEEE standard definitions of terms for antennas, IEEE Std 145-1993, 1-32, July 18, 1993.