Vol. 113
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-09
Metasurface Incorporated Frequency Reconfigurable Planar Antenna for Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 113, 265-275, 2021
Abstract
In this paper, the design of a Metasurface incorporated Frequency Reconfigurable Planar Antenna (MS-FRPA) for Wireless Applications is presented. The structure of projected MS-FRPA consists of a patch with a metasurface placed one above the other with no gap between them. The MS is composed of an array of alternately placed dual split ring resonators arranged periodically in both horizontal and vertical directions. Frequency reconfiguration is achieved by rotating the MS relative to the designed patch antenna. The projected reconfigurable antenna is constructed on Rogers RO4350B material with thickness 1.524 mm. High Frequency Structure Simulator software is employed for analysis of the structure. The results clearly reveal that frequency tuning is achieved in 4.35 to 5.33 GHz with a fractional tuning range of 20.2%. The proposed structure provides appreciable realized gain with stable radiation patterns at all rotation angles. Further, the measured outcomes of the developed prototype show good correlation with the simulated outcomes.
Citation
Navneet Kaur, Jagtar Singh Sivia, and Rajni, "Metasurface Incorporated Frequency Reconfigurable Planar Antenna for Wireless Applications," Progress In Electromagnetics Research C, Vol. 113, 265-275, 2021.
doi:10.2528/PIERC21052703
References

1. Sabapathy, T., M. F. Bin Jamlos, R. B. Ahmad, M. Jusoh, M. I. Jais, and M. R. Kamarudin, "Electronically reconfigurable beam steering antenna using embedded RF PIN based parasitic arrays (ERPPA)," Progress In Electromagnetics Research, Vol. 140, 241-261, 2013.
doi:10.2528/PIER13042906        Google Scholar

2. Bhangi, I. K. and J. S. Sivia, "Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications," International Journal of Electronics and Communications, Vol. 85, 159-168, Feb. 2018.
doi:10.1016/j.aeue.2018.01.005        Google Scholar

3. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
doi:10.2528/PIERB13091611        Google Scholar

4. Singh, J., A. P. Singh, and T. S. Kamal, "Estimation of resonant frequency of a circular microstrip antenna using artificial neural network," Journal of the Institution of Engineers (India): Series B, Vol. 93, No. 1, 7-13, Mar.–May 2012.
doi:10.1007/s40031-012-0002-3        Google Scholar

5. Ge, L. and K. M. Luk, "Frequency-reconfigurable low-profile circular monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3443-3449, Jul. 2014.        Google Scholar

6. Kaur, K. and J. S. Sivia, "A compact hybrid multiband antenna for wireless applications," Wireless Personal Communications, Vol. 97, No. 4, 5917-5927, Dec. 2017.
doi:10.1007/s11277-017-4818-7        Google Scholar

7. Bhatia, S. S. and J. S. Sivia, "On the design of fractal antenna array for multiband applications," Journal of the Institution of Engineers (India): Series B, Vol. 100, 471-476, May 2019.
doi:10.1007/s40031-019-00409-9        Google Scholar

8. Anantha, B., L. Meregu, and P. V. D. S. Rao, "A novel single feed frequency and polarization reconfigurable microstrip patch antenna," International Journal of Electronics and Communications, Vol. 72, 8-16, Feb. 2017.
doi:10.1016/j.aeue.2016.11.012        Google Scholar

9. Li, T., H. Zhai, and C. H. Liang, "Frequency reconfigurable bow-tie antenna array," Electronics Letters, Vol. 50, No. 18, 1264-1266, Aug. 2014.
doi:10.1049/el.2014.1708        Google Scholar

10. Zhu, H. L., X. H. Liu, S. W. Cheung, and T. I. Yuk, "Frequency-reconfigurable antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 80-85, Jan. 2014.
doi:10.1109/TAP.2013.2288112        Google Scholar

11. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 49-61, Feb. 2013.
doi:10.1109/MAP.2013.6474484        Google Scholar

12. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, "An overview of theory and applications of metasurfaces: The two dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714        Google Scholar

13. Zhu, H. L., S. W. Cheung, X. H. Liu, Y. F. Cao, and T. I. Yuk, "Frequency reconfigurable slot antenna using metasurface," The 8th European Conference on Antennas and Propagation (EuCAP), 2575-2577, The Hague, Netherlands, Apr. 2014.        Google Scholar

14. Chatterjee, J., A. Mohan, and V. Dixit, "A novel frequency reconfigurable slot antenna using metasurface," IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, Dec. 16–19, 2018.        Google Scholar

15. Zhu, M. and L. Sun, "Design of frequency reconfigurable antenna based on metasurface," IEEE 2nd Advanced Information Technology, Electronic, and Automation Control Conference (IAEAC), Chongqing, China, Mar. 2017.        Google Scholar

16. Chen, X. and Y. Zhao, "Dual-band polarization and frequency reconfigurable antenna using double layer metasurface," International Journal of Electronics and Communications, Vol. 95, 82-87, Oct. 2018.        Google Scholar

17. Li, H., X. Man, and J. Qi, "Accurate and robust characterization of metasurface-enabled frequency reconfigurable antennas by radially homogeneous model," IEEE Access, Vol. 7, 122605-122612, Sept. 2019.
doi:10.1109/ACCESS.2019.2938804        Google Scholar

18. Sethi, A. and Rajni, "Determination of electromagnetic parameters of a new metasurface comprising of square loop," Journal of Engineering Science and Technology, Vol. 13, No. 1, 48-57, 2018.        Google Scholar

19. Rajni, R. and A. Marwaha, "Electrically small microstrip patch antenna loaded with spiral resonator for wireless applications," Wireless Personal Communications, Vol. 96, No. 2, 2621-2632, Sept. 2017.
doi:10.1007/s11277-017-4315-z        Google Scholar

20. Sharma, N. and S. S. Bhatia, "Double split labyrinth resonator-based CPW-fed hybrid fractal antennas for PCS/UMTS/WLAN/Wi-Max applications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2476-2498, Dec. 2019.
doi:10.1080/09205071.2019.1685009        Google Scholar

21. Rajni, A. Marwaha, "Resonance characteristics and effective parameters of new left hand metamaterial," Telkomnika Indonesian Journal of Electrical Engineering, Vol. 15, No. 3, 497-503, Sept. 2015.
doi:10.11591/tijee.v15i3.1567        Google Scholar

22. Rajni, R. and A. Marwaha, "An accurate approach of mathematical modeling of SRR and SR for metamaterials," Journal of Engineering Science and Technology Review, Vol. 9, No. 6, 82-86, Dec. 2016.
doi:10.25103/jestr.096.11        Google Scholar

23. Rao, S. J. M., R. Sarkar, G. Kumar, and D. B. Chowdhury, "Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials," OSA Continuum, Vol. 2, No. 3, 603-614, Mar. 2019.
doi:10.1364/OSAC.2.000603        Google Scholar