1. Wang, H. and S. Fang, "Design of new dual-stator field modulation machines," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5626-5636, 2020.
doi:10.1109/TIE.2019.2931516 Google Scholar
2. Chen, Q., G. Xu, F. Zhai, et al. "A novel spoke-type PM motor with auxiliary salient poles for low torque pulsation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4762-4773, 2020.
doi:10.1109/TIE.2019.2924864 Google Scholar
3. Wang, D., X. Wang, and S. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2295-2298, 2013.
doi:10.1109/TMAG.2013.2242454 Google Scholar
4. Huynh, T. A. and M. Hsieh, "Comparative study of PM-assisted SynRM and IPMSM on constant power speed range for EV applications," IEEE Trans. Magn., Vol. 53, No. 11, 1-6, 2017.
doi:10.1109/TMAG.2017.2707125 Google Scholar
5. Amin, M. and G. A. A. Aziz, "Hybrid adopted materials in permanent magnet-assisted synchronous reluctance motor with rotating losses computation," IEEE Trans. Magn., Vol. 55, No. 6, 1-5, 2019.
doi:10.1109/TMAG.2019.2904989 Google Scholar
6. Wu, W., "Design and analysis of a new permeability-modulated interior permanent-magnet synchronous machine," IEEE Trans. Magn., Vol. 57, No. 2, 1-5, 2021. Google Scholar
7. Jang, J., M. Humza, and B. Kim, "Design of a variable-flux permanent-magnet synchronous motor for adjustable-speed operation," IEEE Trans. Ind. Appl., Vol. 52, No. 4, 2996-3004, 2016.
doi:10.1109/TIA.2016.2547986 Google Scholar
8. Ibrahim, M., L. Masisi, and P. Pillay, "Design of variable flux permanent-magnet machine for reduced inverter rating," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3666-3674, 2015.
doi:10.1109/TIA.2015.2423661 Google Scholar
9. Sarigiannidis, A. G., M. E. Beniakar, and A. G. Kladas, "Fast adaptive evolutionary PM traction motor optimization based on electric vehicle drive cycle," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 5762-5774, 2017.
doi:10.1109/TVT.2016.2631161 Google Scholar
10. Liu, X., H. Chen, J. Zhao, et al. "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 3533-3545, 2016.
doi:10.1109/TIE.2016.2524415 Google Scholar
11. Zhao, X., S. Niu, and W. Fu, "Design of a novel parallel-hybrid-excited dual-PM machine based on armature harmonics diversity for electric vehicle propulsion," IEEE Trans. Ind. Electron, Vol. 66, No. 6, 4209-4219, 2019.
doi:10.1109/TIE.2018.2863211 Google Scholar
12. Giulii, F., G. De Donato Capponi, G. Borocci, et al. "Axial-flux hybrid-excitation synchronous machine: analysis, design, and experimental evaluation," IEEE Trans. Ind. Appl., Vol. 50, No. 5, 3173-3184, 2014.
doi:10.1109/TIA.2014.2303253 Google Scholar
13. Zhang, L., X. Zhu, J. Gao, et al. "Design and analysis of new five-phase flux-intensifying faulttolerant interior-permanent-magnet motor for sensorless operation," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407 Google Scholar
14. Zhu, X., J. Huang, L. Quan, et al. "Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors," IEEE Trans. Ind. Electron., Vol. 66, No. 4, 2613-2627, 2019.
doi:10.1109/TIE.2018.2849961 Google Scholar
15. Zhao, X., B. Kou, L. Zhang, et al. "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 6, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841 Google Scholar
16. Limsuwan, N., T. Kato, K. Akatsu, et al. "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Trans. Ind. Appl., Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482 Google Scholar
17. Yu, C., J. Tamura, D. Reigosa, et al. "Position self-sensing evaluation of a FI-IPMSM based on high-frequency signal injection methods," IEEE Trans. Ind. Appl., Vol. 49, No. 2, 880-888, 2013.
doi:10.1109/TIA.2013.2243396 Google Scholar
18. Yang, H., "Investigation of hybrid-magnet-circuit variable flux memory machines with different hybrid magnet configurations," IEEE Trans. Ind. Appl., Vol. 57, No. 1, 340-351, 2021.
doi:10.1109/TIA.2020.3033836 Google Scholar
19. Yang, H., H. Zheng, Z. Q. Zhu, et al. "Comparative study of partitioned stator memory machines with series and parallel hybrid PM configurations," IEEE Trans. Magn., Vol. 55, No. 7, 1-8, 2019.
doi:10.1109/TMAG.2019.2894833 Google Scholar
20. Liu, G., G. Xu, W. Zhao, et al. "Improvement of torque capability of permanent-magnet motor by using hybrid rotor configuration," IEEE Trans. Energy Convers., Vol. 32, No. 3, 953-962, 2017.
doi:10.1109/TEC.2017.2665686 Google Scholar
21. Du, Z. S. and T. A. Lipo, "Cost-effective high torque density Bi-magnet machines utilizing rare earth and ferrite permanent magnets," IEEE Trans. Energy Convers., Vol. 35, No. 3, 1577-1584, 2020.
doi:10.1109/TEC.2020.2978256 Google Scholar
22. Lee, J. H., J. Kim, J. Song, et al. "Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, 2017. Google Scholar
23. Sun, X., Z. Shi, G. Lei, Y. Guo, et al. "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Trans. Ind. Electron., Vol. 68, No. 1, 139-148, 2021.
doi:10.1109/TIE.2020.2965463 Google Scholar
24. Liu, G., Y. Wang, Q. Chen, G. Xu, et al. "Multiobjective deterministic and robust optimization design of a new spoke-type permanent magnet machine for the improvement of torque performance," IEEE Trans. Ind. Electron., Vol. 67, No. 12, 10202-10212, 2020.
doi:10.1109/TIE.2019.2962472 Google Scholar
25. Du, G., Q. Zhou, S. Liu, et al. "Multiphysics design and multiobjective optimization for high-speed permanent magnet machines," IEEE Trans. Trans. Electr., Vol. 6, No. 3, 1084-1092, 2020.
doi:10.1109/TTE.2020.2998639 Google Scholar