Vol. 114
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-29
Multi-Objective Optimal Design of the MFW-IPM Machine for Improve Flux-Weakening Ability
By
Progress In Electromagnetics Research C, Vol. 114, 97-112, 2021
Abstract
In this paper, a novel mechanical-flux-weakening interior permanent magnet (MFW-IPM) machine is proposed to improve flux-weakening ability. The key of the proposed machine is that the permanent magnet is rotatable, and a mechanical device is equipped on both sides of the rotor. The mechanical device can regulate the air-gap magnetic field by rotating PM to change the leakage flux and magnetization direction of PM. As a result, the flux-weakening ability is improved. The flux-weakening principle of the MFW-IPM machine is investigated in detail. In addition, a multi-objective optimization method is adopted to improve the performance of the proposed machine. Then, the electromagnetic performances of the original machine and optimized machine are compared by finite element analysis. Finally, both simulation results and experimental tests verify the effectiveness of the flux-weakening enhancement design and optimization method.
Citation
Xiping Liu Gaosheng Guo Wenjian Zhu Longxin Du , "Multi-Objective Optimal Design of the MFW-IPM Machine for Improve Flux-Weakening Ability," Progress In Electromagnetics Research C, Vol. 114, 97-112, 2021.
doi:10.2528/PIERC21060303
http://www.jpier.org/PIERC/pier.php?paper=21060303
References

1. Wang, H. and S. Fang, "Design of new dual-stator field modulation machines," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5626-5636, 2020.
doi:10.1109/TIE.2019.2931516

2. Chen, Q., et al., "A novel spoke-type PM motor with auxiliary salient poles for low torque pulsation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4762-4773, 2020.
doi:10.1109/TIE.2019.2924864

3. Wang, D., X. Wang, and S. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2295-2298, 2013.
doi:10.1109/TMAG.2013.2242454

4. Huynh, T. A. and M. Hsieh, "Comparative study of PM-assisted SynRM and IPMSM on constant power speed range for EV applications," IEEE Trans. Magn., Vol. 53, No. 11, 1-6, 2017.
doi:10.1109/TMAG.2017.2707125

5. Amin, M. and G. A. A. Aziz, "Hybrid adopted materials in permanent magnet-assisted synchronous reluctance motor with rotating losses computation," IEEE Trans. Magn., Vol. 55, No. 6, 1-5, 2019.
doi:10.1109/TMAG.2019.2904989

6. Wu, W., "Design and analysis of a new permeability-modulated interior permanent-magnet synchronous machine," IEEE Trans. Magn., Vol. 57, No. 2, 1-5, 2021.

7. Jang, J., M. Humza, and B. Kim, "Design of a variable-flux permanent-magnet synchronous motor for adjustable-speed operation," IEEE Trans. Ind. Appl., Vol. 52, No. 4, 2996-3004, 2016.
doi:10.1109/TIA.2016.2547986

8. Ibrahim, M., L. Masisi, and P. Pillay, "Design of variable flux permanent-magnet machine for reduced inverter rating," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3666-3674, 2015.
doi:10.1109/TIA.2015.2423661

9. Sarigiannidis, A. G., M. E. Beniakar, and A. G. Kladas, "Fast adaptive evolutionary PM traction motor optimization based on electric vehicle drive cycle," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 5762-5774, 2017.
doi:10.1109/TVT.2016.2631161

10. Liu, X., et al., "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 3533-3545, 2016.
doi:10.1109/TIE.2016.2524415

11. Zhao, X., S. Niu, and W. Fu, "Design of a novel parallel-hybrid-excited dual-PM machine based on armature harmonics diversity for electric vehicle propulsion," IEEE Trans. Ind. Electron, Vol. 66, No. 6, 4209-4219, 2019.
doi:10.1109/TIE.2018.2863211

12. Giulii, F., et al., "Axial-flux hybrid-excitation synchronous machine: analysis, design, and experimental evaluation," IEEE Trans. Ind. Appl., Vol. 50, No. 5, 3173-3184, 2014.
doi:10.1109/TIA.2014.2303253

13. Zhang, L., et al., "Design and analysis of new five-phase flux-intensifying faulttolerant interior-permanent-magnet motor for sensorless operation," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407

14. Zhu, X., et al., "Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors," IEEE Trans. Ind. Electron., Vol. 66, No. 4, 2613-2627, 2019.
doi:10.1109/TIE.2018.2849961

15. Zhao, X., et al., "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 6, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841

16. Limsuwan, N., et al., "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Trans. Ind. Appl., Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482

17. Yu, C., et al., "Position self-sensing evaluation of a FI-IPMSM based on high-frequency signal injection methods," IEEE Trans. Ind. Appl., Vol. 49, No. 2, 880-888, 2013.
doi:10.1109/TIA.2013.2243396

18. Yang, H., "Investigation of hybrid-magnet-circuit variable flux memory machines with different hybrid magnet configurations," IEEE Trans. Ind. Appl., Vol. 57, No. 1, 340-351, 2021.
doi:10.1109/TIA.2020.3033836

19. Yang, H., et al., "Comparative study of partitioned stator memory machines with series and parallel hybrid PM configurations," IEEE Trans. Magn., Vol. 55, No. 7, 1-8, 2019.
doi:10.1109/TMAG.2019.2894833

20. Liu, G., et al., "Improvement of torque capability of permanent-magnet motor by using hybrid rotor configuration," IEEE Trans. Energy Convers., Vol. 32, No. 3, 953-962, 2017.
doi:10.1109/TEC.2017.2665686

21. Du, Z. S. and T. A. Lipo, "Cost-effective high torque density Bi-magnet machines utilizing rare earth and ferrite permanent magnets," IEEE Trans. Energy Convers., Vol. 35, No. 3, 1577-1584, 2020.
doi:10.1109/TEC.2020.2978256

22. Lee, J. H., et al., "Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, 2017.

23. Sun, X., et al., "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Trans. Ind. Electron., Vol. 68, No. 1, 139-148, 2021.
doi:10.1109/TIE.2020.2965463

24. Liu, G., et al., "Multiobjective deterministic and robust optimization design of a new spoke-type permanent magnet machine for the improvement of torque performance," IEEE Trans. Ind. Electron., Vol. 67, No. 12, 10202-10212, 2020.
doi:10.1109/TIE.2019.2962472

25. Du, G., et al., "Multiphysics design and multiobjective optimization for high-speed permanent magnet machines," IEEE Trans. Trans. Electr., Vol. 6, No. 3, 1084-1092, 2020.
doi:10.1109/TTE.2020.2998639