1. Shinohara, N., "Trends in wireless power transfer: WPT technology for energy harvesting, mllimeter-wave/THz rectennas, MIMO-WPT, and advances in near-field WPT applications," IEEE Microwave Magazine, Vol. 22, No. 1, 46-59, 2021.
doi:504 Gateway Time-out
Google Scholar
2. Gonçalves, Y., U. Resende, and I. Soares, "Electromagnetic energy harvesting using a glass window," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 1, 50-59, 2020.
doi:The server didn't respond in time. Google Scholar
3. Hamied, F. M. A., K. Mahmoud, M. Hussein, and S. S. A. Obayya, "Design and analysis of rectangular spiral nano-antenna for solar energy harvesting," Progress In Electromagnetics Research C, Vol. 111, 25-34, 2021.
doi: Google Scholar
4. Wu, N., B. Bao, and Q. Wang, "Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output," Engineering Structures, Vol. 235, 112068, 2021.
doi:10.1016/j.engstruct.2021.112068 Google Scholar
5. Shakeel, M., K. Rehman, S. Ahmad, M. Amin, N. Iqbal, and A. Khan, "A low-cost printed organic thermoelectric generator for low-temperature energy harvesting," Renewable Energy, Vol. 167, 853-860, 2021.
doi:10.1016/j.renene.2020.11.158 Google Scholar
6. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833 Google Scholar
7. Divakaran, S., D. Krishna, Nasimuddin, and J. K. Antony, "Dual-band multi-port rectenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 107, 17-31, 2021.
doi:10.2528/PIERC20100802 Google Scholar
8. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102 Google Scholar
9. Sanislav, T., G. D. Mois, S. Zeadally, and S. C. Folea, "Energy harvesting techniques for internet of things (IoT)," IEEE Access, Vol. 9, 39530-39549, 2021.
doi:10.1109/ACCESS.2021.3064066 Google Scholar
10. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604 Google Scholar
11. Dong, Y., P. Fan, and K. B. Letaief, "Energy harvesting powered sensing in IoT: Timeliness versus distortion," IEEE Internet of Things Journal, Vol. 7, No. 11, 10897-10911, 2020.
doi:10.1109/JIOT.2020.2990715 Google Scholar
12. Xu, H., L. Tsang, J. Johnson, K. C. Jezek, J.-B. Yan, and P. Gogineni, "A combined active and passive method for the remote sensing of ice sheet temperature profiles," Progress In Electromagnetics Research, Vol. 167, 111-126, 2020.
doi:10.2528/PIER20030601 Google Scholar
13. Williams, A., M. Torquato, I. Cameron, A. Fahmy, and J. Sienz, "Survey of energy harvesting technologies for wireless sensor networks," IEEE Access, Vol. 9, 77493-77510, 2021.
doi:10.1109/ACCESS.2021.3083697 Google Scholar
14. Brandão, G. L. F., Ú. C. Resende, F. S. Bicalho, G. A. T. Almeida, and M. M. Afonso, "Parallel association of rectennas for electromagnetic energy harvesting," Proceedings of the 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, 2017. Google Scholar
15. Pereira, P., R. C. M. Pimenta, R. Adriano, G. L. F. Brandão, and Ú. C. Resende, "Antenna impedance correction for low power energy harvesting devices," Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 2017. Google Scholar
16. Corrêa, D. C., U. C. Resende, F. S. Bicalho, and Y. S. Gonçalves, "Design, optimization and experimental evaluation of a F-shaped multiband metamaterial antenna," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 17, No. 4, 590-603, 2018.
doi:10.1590/2179-10742018v17i41541 Google Scholar
17. Li, S., F. Cheng, C. Gu, S. Yu, and K. Huang, "Efficient dual-band rectier using stepped impedance stub matching network for wireless energy harvesting," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 7, 921-924, 2021.
doi:10.1109/LMWC.2021.3078546 Google Scholar
18. Liu, L., Q.-Y. Xiang, D. Tian, and Q. Feng, "A novel antenna feeding network with separately resonant frequency and impedance matching tunable capability," Progress In Electromagnetics Research Letters, Vol. 81, 85-91, 2019.
doi:10.2528/PIERL18120709 Google Scholar
19. Wagih, M., N. Hillier, S. Yong, A. Weddell, and S. Beeby, "RF-powered wearable energy harvesting and storage module based on E-textile coplanar waveguide rectenna and supercapacitor," IEEE Open Journal of Antennas and Propagation, Vol. 2, 302-314, 2021.
doi:10.1109/OJAP.2021.3059501 Google Scholar
20. Altíntaş, O., M. Aksoy, E. Ünal, M. Karaaslan, and C. Sabah, "Operating frequency reconguration study for a split ring resonator based micro uidic sensor," Journal of the Electrochemical Society, Vol. 167, No. 14, 147512, 2020.
doi:10.1149/1945-7111/abc656 Google Scholar
21. Chakravartula, V., S. Rakshit, S. Dhanalakshmi, R. Kumar, and R. Narayanamoorthi, "Linear temperature distribution sensor using FBG in liquids --- Local heat transfer examination application," IEEE Sensors Journal, 2021. Google Scholar
22. Dalgaç, S., M. Furat, M. Karaaslan, O. Akgöl, F. Karadag, M. Zile, and M. Bakir, "Grease oil humidity sensor by using metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 18, 2488-2498, 2020.
doi:10.1080/09205071.2020.1824690 Google Scholar
23. Yu, H., C. Wang, F. Meng, J. Xiao, J. Liang, H. Kim, S. Bae, D. Zou, E. Kim, N. Kim, M. Zhao, and B. Li, "Microwave humidity sensor based on carbon dots-decorated MOF-derived porous Co3O4 for breath monitoring and finger moisture detection," Carbon, 2021. Google Scholar
24. Lin, L., W. Jiang, X. Xu, and P. Xu, "A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation," NPJ Clean Water, Vol. 3, No. 1, 202. Google Scholar
25. Ma, K., Z. Li, P. Liu, J. Yang, Y. Geng, B. Yang, and X. Guan, "Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay," IEEE Internet of Things Journal, 2021. Google Scholar
26. Lee, W., H. Park, S. Kim, S. Park, D. Kim, and H. Lee, "Wireless-powered VOCs sensor based on energy-harvesting metamaterial," Advanced Electronic Materials, Vol. 7, No. 5, 2001240, 2021.
doi:10.1002/aelm.202001240 Google Scholar
27. Abdulkarim, Y., H. Awl, F. Alkurt, F. Muhammadsharif, S. Saeed, M. Karaaslan, M. Bakır, and H. Luo, "A thermally stable and polarization insensitive square-shaped water metamaterial with ultra-broadband absorption," Journal of Materials Research and Technology, Vol. 13, 1150-1158, 2020. Google Scholar
28. Cai, X., W. Geyi, and Y. Guo, "A compact rectenna with flat-top angular coverage for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 7, 1307-1311, 2021.
doi:10.1109/LAWP.2021.3078548 Google Scholar
29. Lu, P., C. Song, and K. Huang, "Ultra-wideband rectenna using complementary resonant structure for microwave power transmission and energy harvesting," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 7, 3452-3462, 2021.
doi:10.1109/TMTT.2021.3067902 Google Scholar
30. Roy, S., R. Tiang, M. Roslee, M. Ahmed, and M. Mahmud, "Quad-band multiport rectenna for RF energy harvesting in ambient environment," IEEE Access, Vol. 9, 77464-77481, 2021.
doi:10.1109/ACCESS.2021.3082914 Google Scholar
31. Gu, X., L. Grauwin, D. Dousset, S. Hemour, and K. Wu, "Dynamic ambient RF energy density measurements of montreal for battery-free IoT sensor network planning," IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3065683, 2021.
doi:doi: 10.1109/JIOT.2021.3065683 Google Scholar
32. Balanis, C. A., Antenna Theory --- Analysis and Design, 2nd Ed., John Wiley & Sons, Hoboken, NJ, 1997.
33. Morais, R., J. Mendes, R. Silva, N. Silva, J. Sousa, and E. Peres, "A versatile, low-power and low-cost IoT device for field data gathering in precision agriculture practices," Agriculture, Vol. 11, No. 7, 619, 2021.
doi:10.3390/agriculture11070619 Google Scholar
34. Sowmya, N., S. Rout, and R. Patjoshi, "Implementation of ultra-low-power electronics for biomedical applications," Electronic Devices, Circuits, and Systems for Biomedical Applications, 153-176, 2021.
doi:10.1016/B978-0-323-85172-5.00004-6 Google Scholar
35. Stolojescu-Crisan, C., C. Crisan, and B. Butunoi, "An IoT-based smart home automation system," Sensors, Vol. 21, No. 11, 3784, 2021.
doi:10.3390/s21113784 Google Scholar