1. Ran, L. G., H. K. Cha, and W. T. Park, "RF power harvesting: A review on designing methodologies and applications," Micro. and Nano Syst. Lett., Vol. 5, 14, 2017.
doi:10.1186/s40486-017-0051-0 Google Scholar
2. Sleebi, K., D. Deepti, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 1, 1-15, 2018. Google Scholar
3. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, Oct. 2020.
doi:10.1109/MAP.2020.3012872 Google Scholar
4. Chen, Y. and C. Chiu, "Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2305-2317, May 2017.
doi:10.1109/TAP.2017.2682228 Google Scholar
5. Almoneef, S., "Design of a rectenna array without a matching network," IEEE Access, Vol. 8, 109071-109079, 2020.
doi:10.1109/ACCESS.2020.3001903 Google Scholar
6. Song, C., et al., "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvestin," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3950-3961, May 2017.
doi:10.1109/TIE.2016.2645505 Google Scholar
7. Sabhan, D., V. J. Nesamoni, and J. Thangappan, "An efficient 2.45 GHz spiral rectenna without a matching circuit for RF energy harvesting," Wireless Personal Communications, Vol. 119, 713-726, 2021.
doi:10.1007/s11277-021-08233-5 Google Scholar
8. Jing, J., J. Pang, S. Wang, Z. Qiu, and C. Liu, "A compact hollowed-out loop rectenna without matching network for wireless sensor applications," Int. J. RF Microw. Comput. Aided Eng., e22417, 2020. Google Scholar
9. Zeng, M., A. S. Andrenko, X. Liu, Z. Li, and H.-Z. Tan, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460 Google Scholar
10. Wagih, M., A. S. Weddell, and S. Beeby, "Meshed high-impedance matching network-free rectenna optimized for additive manufacturing," IEEE Open Journal of Antennas and Propagation, Vol. 1, 615-626, 2020.
doi:10.1109/OJAP.2020.3038001 Google Scholar
11. Visser, H., S. Keyrouz, and A. Smolders, "Optimized rectenna design," Wireless Power Transfer, Vol. 2, No. 1, 44-50, 2015.
doi:10.1017/wpt.2014.14 Google Scholar
12. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 11, 929-932, 2012. Google Scholar
13. Hagerty, J. A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 3, 1014-1024, Mar. 2004.
doi:10.1109/TMTT.2004.823585 Google Scholar
14. De Long, B. J., A. Kiourti, and J. L. Volakis, "A radiating near-field patch rectenna for wireless power transfer to medical implants at 2.4 GHz," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 2, No. 1, 64-69, Mar. 2018.
doi:10.1109/JERM.2018.2815905 Google Scholar
15. Shen, S., C. Chiu, and R. D. Murch, "A dual-port triple-band l-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397 Google Scholar
16. Shi, Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 814-822, Feb. 2019.
doi:10.1109/TAP.2018.2882632 Google Scholar
17. Nie, M., X. Yang, G. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguid," IEEE Antennas Wireless Propag. Lett., Vol. 14, 986-989, Dec. 2015.
doi:10.1109/LAWP.2015.2388789 Google Scholar
18. Hassan, N., Z. Zakaria, Y. W. Sam, and I. N. M. Hanapiah, "Design of dual-band micro strip patch antenna with right-angle triangular aperture slot for energy transfer application," Wiley RF and Microwave Computer-Aided Engineering, e21666, 2018. Google Scholar
19. Mohd Noor, F. S., Z. Zakaria, H. Lago, and M. A. Meor Said, "Dual-band aperture-coupled rectenna for radio frequency energy harvesting," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 1, e21651, 2019.
doi:10.1002/mmce.21651 Google Scholar
20. Bhatt, K., S. Kumar, P. Kumar, and C. C. Tripathi, "Highly efficient 2.4 and 5.8 GHz dual-band rectenna for energy harvesting applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 12, 2637-2641, Dec. 2019.
doi:10.1109/LAWP.2019.2946911 Google Scholar
21. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 11, 929-932, 2012. Google Scholar
22. Boursianis, A. D., et al., "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, Vol. 2, 151-162, 2021.
doi:10.1109/OJAP.2020.3048495 Google Scholar
23. Ahn, C.-H. and S. Oh, "High gain pentagonal loop rectifying antenna," Microw. Opt. Technol. Lett., Vol. 60, 1075-1079, 2018.
doi:10.1002/mop.31110 Google Scholar
24. Travassos, X. L., D. A. G. Vieira, and A. C. Lisbo, "Antenna optimization using multiobjective algorithms," ISRN Communications and Networking, Vol. 2012, 2012. Google Scholar
25. Kaur, G., M. Rattan, and C. Jain, "Optimization of swastika slotted fractal antenna using genetic algorithm and bat algorithm for S-band utilities," Wireless Personal Communications, Vol. 97, No. 1, 95-107, 2017.
doi:10.1007/s11277-017-4495-6 Google Scholar
26. Kaur, G., M. Ratta, and C. Jain, "Design and optimization of psi (ψ) slotted fractal antenna using ANN and GA for multiband applications," Wireless Personal Communications, Vol. 97, No. 3, 4573-4585, 2017.
doi:10.1007/s11277-017-4739-5 Google Scholar
27. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMT, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
doi:10.2528/PIERM12102705 Google Scholar
28. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized ve-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
doi:10.2528/PIERB19012905 Google Scholar
29. Jin, N. and Y. Rahmat-Samii, "Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3786-3794, 2010.
doi:10.1109/TAP.2010.2078477 Google Scholar
30. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binar, single-objective and multiobjective implementation," IEEE Tran. Antennas Propag., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552 Google Scholar
31. Choudhury, B., S. Manickam, and R. M. Jha, "Particle swarm optimization for multiband metamaterial fractal antenna," Journal of Optimization, 2013. Google Scholar
32. Sun, L.-L., J.-T. Hu, K.-Y. Hu, M.-W. He, and H.-N. Chen, "Multi-species particle swarms optimization based on orthogonal learning and its application for optimal design of a butter y shaped patch antenna," J. Cent. South Univ., Vol. 23, No. 8, 2048-2062, 2016.
doi:10.1007/s11771-016-3261-3 Google Scholar
33. Tang, M.-C., X. Chen, M. Li, and R. Ziolkowski, "Particle swarm optimized, 3D-printed, wideband, compact hemispherical antenna," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 11, 2031-2035, 2018.
doi:10.1109/LAWP.2018.2847286 Google Scholar
34. Martinez-Fernandez, J., J. M. Gil, and J. Zapata, "Ultrawideband optimized profile monopole antenna by means of simulated annealing algorithm and the finite element method," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1826-1832, 2007.
doi:10.1109/TAP.2007.898593 Google Scholar
35. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas and Propagation Magazine, Vol. 59, No. 1, 48-57, 2017.
doi:10.1109/MAP.2016.2630025 Google Scholar
36. Monavar, F. M., N. Komjani, and P. Mousavi, "Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1369-1372, 2011.
doi:10.1109/LAWP.2011.2177801 Google Scholar
37. Karimkashi, S. and A. A. Kishk, "Invasive weed optimization and its features in electromagnetics," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1269-1278, 2010.
doi:10.1109/TAP.2010.2041163 Google Scholar
38. Bhaskar, S. and A. K. Singh, "A compact meander line UHF RFID antenna for passive tag applications," Progress In Electromagnetics Research M, Vol. 99, 57-67, 2021.
doi:10.2528/PIERM20082103 Google Scholar
39. Rahmat-Samii, Y., J. M. Kovitz, and H. Rajagopalan, "Nature-inspired optimization techniques in communication antenna designs," Proceedings of the IEEE, Vol. 100, No. 7, 2132-2144, Jul. 2012.
doi:10.1109/JPROC.2012.2188489 Google Scholar