Vol. 100
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-01
Synthesis of a Dual-Band Flat-Top Pattern Using Polarization Dependent Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 100, 81-89, 2021
Abstract
A simple and novel polarization-dependent phase gradient metasurface (PGMS) is proposed to synthesize a flat-top radiation pattern by dividing the metasurface (MTS) into multiple regions. Each sub-region generates a beam in a particular direction and multiple beams with different directions form a flat-top pattern in the far-field. A flat-top pattern in a single and 3D plane are realized by dividing the MTS into two and four regions, respectively. The proposed MTS consists of a multi-layered elliptical geometry encircled by a square loop. The elliptical shape of the unitcell offers polarization dependent behavior and produces dual-band characteristics for different incident wave polarizations at 10 and 12 GHz. Two microstrip patch antennas operating at 10 GHz and 12 GHz are placed at the focal point of the MTS. The simulated flat-top beamwidths in a single plane with a 1 dB ripple are 36˚ and 34˚ at 10 and 11.8 GHz respectively. Similarly, in 3D space, the beamwidths are 33˚ and 31˚ at 10 and 11.8 GHz, respectively. Both simulated and measured results are presented for 3D flat-top patterns.
Citation
Pallapati Vinod Kumar, and Basudeb Ghosh, "Synthesis of a Dual-Band Flat-Top Pattern Using Polarization Dependent Metasurface," Progress In Electromagnetics Research Letters, Vol. 100, 81-89, 2021.
doi:10.2528/PIERL21070404
References

1. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, 2017.

2. Volakis, J. L., Antenna Engineering Handbook, McGraw-Hill Education, 2007.

3. Zhou, H.-J., Y.-H. Huang, B.-H. Sun, and Q.-Z. Liu, "Design and realization of a at-top shaped beam antenna array," Progress In Electromagnetics Research Letters, Vol. 5, 159-166, 2008.
doi:10.2528/PIERL08111911

4. Monavar, F. M., S. Shamsinejad, R. Mirzavand, J. Melzer, and P. Mousavi, "Beam-steering SIW leaky-wave subarray with at-topped footprint for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1108-1120, 2017.
doi:10.1109/TAP.2017.2662208

5. Rao, S., L. Shafai, and S. K. Sharma, Handbook of Re ector Antennas and Feed Systems Volume III: Applications of Re ectors, Artech House, 2013.

6. Nguyen, N. T., R. Sauleau, and L. Le Coq, "Lens antennas with at-top radiation patterns: Benchmark of beam shaping techniques at the feed array level and lens shape level," 2009 3rd European Conference on Antennas and Propagation, 2834-2837, 2009.

7. Chahat, N., E. Decrossas, D. Gonzalez-Ovejero, O. Yurduseven, M. J. Radway, R. E. Hodges, P. Estabrook, J. D. Baker, D. J. Bell, T. A. Cwik, et al. "Advanced cubesat antennas for deep space and earth science missions: A review," IEEE Antennas and Propagation Magazine, Vol. 61, No. 5, 37-46, 2019.
doi:10.1109/MAP.2019.2932608

8. Chen, C., B. Zhang, and K. Huang, "Nonuniform Fabry-Perot leaky-wave antenna with at- topped radiation patterns for microwave wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1863-1867, 2019.
doi:10.1109/LAWP.2019.2931593

9. Ozdemir, E., O. Akgol, F. Ozkan Alkurt, M. Karaaslan, Y. I. Abdulkarim, and L. Deng, "Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach," Applied Sciences, Vol. 10, No. 1, 378, 2020.
doi:10.3390/app10010378

10. Ozturk, M., U. K. Sevim, O. Altintas, E.  Unal, O. Akgol, M. Karaaslan, and C. Sabah, "Design of a linear to circular polarization converter integrated into a concrete construction for radome applications," International Journal of Microwave and Wireless Technologies, 1-8, 2021.

11. Abdulkarim, Y. I., H. N. Awl, F. F. Muhammadsharif, M. Karaaslan, R. H. Mahmud, S. O. Hasan,  O. Isik, H. Luo, and S. Huang, "A low-pro le antenna based on single-layer metasurface for Ku-band applications," International Journal of Antennas and Propagation, Vol. 2020, 2020.
doi:10.1155/2020/8813951

12. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of re ection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

13. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, Vol. 81, No. 2, 026401, 2017.
doi:10.1088/1361-6633/aa8732

14. Faenzi, M., D. Gonzalez-Ovejero, and S. Maci, "Flat gain broadband metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 4, 1942-1951, 2020.
doi:10.1109/TAP.2020.3026476

15. He, B., J. Fan, Y. Cheng, F. Chen, H. Luo, and R. Gong, "Thermally tunable terahertz vortex beam generator based on an insb metasurface," JOSA B,, Vol. 38, No. 5, 1518-1524, 2021.
doi:10.1364/JOSAB.420928

16. Zhou, E., Y. Cheng, F. Chen, and H. Luo, "Wideband and high-gain patch antenna with re ective focusing metasurface," AEU-International Journal of Electronics and Communications, Vol. 134, 153709, 2021.
doi:10.1016/j.aeue.2021.153709

17. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multi- functional wavefront manipulation based on chiral structure metasurface for terahertz wave," Journal of Physics D: Applied Physics, Vol. 53, No. 2, 025109, 2019.
doi:10.1088/1361-6463/ab4d76

18. Wang, J., J. Fan, H. Shu, C. Liu, and Y. Cheng, "Efficiency-tunable terahertz focusing lens based on graphene metasurface," Opto-Electronic Engineering, Vol. 48, No. 4, 200319-1, 2021.

19. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Wide angle beam steerable high gain at top beam antenna using graded index metasurface lens," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6334-6343, 2019.
doi:10.1109/TAP.2019.2923075

20. Li, H., G. Wang, T. Cai, H. Hou, and W. Guo, "Wideband transparent beam-forming metadevice with amplitude-and phase-controlled metasurface," Physical Review Applied, Vol. 11, No. 1, 014043, 2019.
doi:10.1103/PhysRevApplied.11.014043

21. Li, H., G. Wang, L. Zhu, X. Gao, and H. Hou, "Wideband beam-forming metasurface with simultaneous phase and amplitude modulation," Optics Communications, Vol. 466, 124601, 2020.
doi:10.1016/j.optcom.2019.124601

22. Li, H.-P., G.-M.Wang, X.-J. Gao, J.-G. Liang, and H.-S. Hou, "An X/Ku-band focusing anisotropic metasurface for low cross-polarization lens antenna application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.
doi:10.2528/PIER17032807

23. Cai, T., G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, "High-performance transmissive meta-surface for C-/X-band lens antenna application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3598-3606, 2017.
doi:10.1109/TAP.2017.2705228

24. Zhao, R., L. Huang, and Y. Wang, "Recent advances in multi-dimensional metasurfaces holographic technologies," PhotoniX, Vol. 1, No. 1, 1-24, 2020.
doi:10.1186/s43074-020-00020-y

25. Ryan, C. G., M. R. Chaharmir, J. Shaker, J. R. Bray, Y. M. Antar, and A. Ittipiboon, "A wideband transmitarray using dual-resonant double square rings," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1486-1493, 2010.
doi:10.1109/TAP.2010.2044356

26. Li, H., G. Wang, H.-X. Xu, T. Cai, and J. Liang, "X-band phase-gradient metasurface for high- gain lens antenna application," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5144-5149, 2015.
doi:10.1109/TAP.2015.2475628

27. Abdelrahman, A. H., F. Yang, A. Z. Elsherbeni, and P. Nayeri, "Analysis and design of transmitarray antennas," Synthesis Lectures on Antennas, Vol. 6, No. 1, 1-175, 2017.
doi:10.2200/S00749ED1V01Y201612ANT012

28. Fan, J., Y. Cheng, and B. He, "High-efficiency ultrathin terahertz geometric metasurface for fullspace wavefront manipulation at two frequencies," Journal of Physics D: Applied Physics, Vol. 54, No. 11, 115101, 2021.
doi:10.1088/1361-6463/abcdd0

29. Jia, S. L., X. Wan, D. Bao, Y. J. Zhao, and T. J. Cui, "Independent controls of orthogonally polarized transmitted waves using a huygens metasurface," Laser & Photonics Reviews, Vol. 9, No. 5, 545-553, 2015.
doi:10.1002/lpor.201500094

30. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Independent controls of differently-polarized re ected waves by anisotropic metasurfaces," Scienti c Reports, Vol. 5, 9605, 2015.
doi:10.1038/srep09605

31. Kumar, V. and B. Ghosh, "Dual-band at-top pattern synthesis using phase gradient metasurface," 2020 International Symposium on Antennas & Propagation (APSYM), 105-108, IEEE, 2020.

32. Maximidis, R., A. Smolders, G. Toso, and D. Caratelli, "Planar reactively loaded array antenna with at-top radiation pattern characteristics," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2091-2092, IEEE, 2020.
doi:10.1109/IEEECONF35879.2020.9330061