Vol. 99
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-17
A 37-43 GHz Endfire Antenna Element Based on Ball Grid Array Packaging for 5G Wireless Systems
By
Progress In Electromagnetics Research Letters, Vol. 99, 135-142, 2021
Abstract
A 37-43 GHz endfire antenna based on ball grid array (BGA) packaging is proposed for the fifth-generation (5G) wireless system. The antenna consists of a miniaturized radiator and reflector. Besides, the radiator is fed by a substrate integrated waveguide (SIW). Furthermore, the RF transition from the SIW to grounded coplanar waveguide (GCPW) and vertical quasi-coaxial is realized on the substrate. The antenna is implemented on a single-layer substrate using standard printed circuit board (PCB) technology to reduce costs. Then, the cost-effective antenna element is reflow soldered with solder balls to form a BGA packaging. The advantages of the BGA packaging and the three-dimensional (3D) integration are discussed in detail. The miniature packaging achieves a compact size of 7 mm × 3.4 mm × 0.6 mm. Finally, a prototype was manufactured to verify the performance. The measurement results show that the proposed antenna is a good candidate for 5G millimeter-wave (mmWave) New Radio (NR) applications.
Citation
Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "A 37-43 GHz Endfire Antenna Element Based on Ball Grid Array Packaging for 5G Wireless Systems," Progress In Electromagnetics Research Letters, Vol. 99, 135-142, 2021.
doi:10.2528/PIERL21072103
References

1. Andrews, J. G., et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098        Google Scholar

2. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813        Google Scholar

3. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888        Google Scholar

4. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899        Google Scholar

5. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514        Google Scholar

6. Zhang, Y., "Antenna-in-package technology: Its early development [historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916        Google Scholar

7. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267        Google Scholar

8. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412        Google Scholar

9. Ali, M., et al. "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 9, 1515-1523, Sep. 2020.
doi:10.1109/TCPMT.2020.3013725        Google Scholar

10. Jin, C., V. N. Sekhar, X. Bao, B. Chen, B. Zheng, and R. Li, "Antenna-in-package design based on wafer-level packaging with through silicon via technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1498-1505, Sep. 2013.
doi:10.1109/TCPMT.2013.2261855        Google Scholar

11. Choi, J., D. Choi, J. Lee, W. Hwang, and W. Hong, "Adaptive 5G architecture for an mmWave antenna front-end package consisting of tunable matching network and surface-mount technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 12, 2037-2046, Dec. 2020.
doi:10.1109/TCPMT.2020.3034586        Google Scholar

12. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized end re planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020.
doi:10.1109/TAP.2019.2930100        Google Scholar

13. Beer, S., H. Gulan, C. Rusch, and T. Zwick, "Coplanar 122-GHz antenna array with air cavity re ector for integration in plastic packages," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 160-163, 2012.
doi:10.1109/LAWP.2012.2186783        Google Scholar

14. Beer, S., et al. "An integrated 122-GHz antenna array with wire bond compensation for SMT radar sensors," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 5976-5983, Dec. 2013.
doi:10.1109/TAP.2013.2282708        Google Scholar

15. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017.
doi:10.1109/TAP.2017.2722873        Google Scholar

16. Gu, X., et al. "Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 7, 2975-2984, Jul. 2019.
doi:10.1109/TMTT.2019.2912819        Google Scholar

17. Tsai, C. H., et al. "Fabrication and characterization of millimeter wave 3D InFO dipole antenna array integrated with CMOS front-end circuits," 2019 IEEE International Electron Devices Meeting (IEDM), 25.3.1-25.3.4, Dec. 2019.
doi:10.1109/IEDM19573.2019.8993591        Google Scholar

18. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002.
doi:10.1049/el:20020144        Google Scholar

19. Zhang, Y. P., "Integrated circuit ceramic ball grid array package antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 2538-2544, Oct. 2004.
doi:10.1109/TAP.2004.834427        Google Scholar

20. Sun, M., Y. P. Zhang, D. Liu, K. M. Chua, and L. L. Wai, "A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2134-2140, Jun. 2011.
doi:10.1109/TAP.2011.2143669        Google Scholar

21. Tong, Z., A. Fischer, A. Stelzer, and L. Maurer, "Radiation performance enhancement of E-band antenna in package," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 11, 1953-1959, Nov. 2013.
doi:10.1109/TCPMT.2013.2272039        Google Scholar

22. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/microwave LTCC-SiP module packaging," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 1, 34-36, Jan. 2008.
doi:10.1109/LMWC.2007.911986        Google Scholar