Vol. 100
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-23
Highly Flexible Uniplanar Dual-Band Power Divider for Arbitrary Source and Load Impedances
By
Progress In Electromagnetics Research Letters, Vol. 100, 159-167, 2021
Abstract
In this paper, a dual-band impedance transforming power divider is investigated for all types of impedance environments at its ports, irrespective of the locations of the ports. The intuitive design approach utilizes conventional single-band Wilkinson Power Divider (WPD) architecture to provide the superior dual-band performance with arbitrary port impedances. The proposed power divider also accords a high degree of design flexibility with high frequency ratios (r) and impedance transformation ratios (k). The presented concept is evaluated and verified by design examples and measurements with a fabricated prototype. The agreement between the simulation and measurement results validates the working of the proposed architecture with arbitrary source and load port impedances at two arbitrary design frequencies.
Citation
Rahul Gupta, Maher Assaad, and Mohammad S. Hashmi, "Highly Flexible Uniplanar Dual-Band Power Divider for Arbitrary Source and Load Impedances," Progress In Electromagnetics Research Letters, Vol. 100, 159-167, 2021.
doi:10.2528/PIERL21072104
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Trans. Microw. Theory Techn., Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

2. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley, 2005.

3. Gupta, R. and M. S. Hashmi, "High impedance transforming simpli ed balun architecture in microstrip technology," Microw. Optical Technol. Lett., Vol. 60, No. 12, 3019-3023, Sept. 2018.
doi:10.1002/mop.31450

4. Liao, M., Y. Wu, Y. Liu, and J. Gao, "Impedance-transforming dual-band out-of-phase power divider," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 8, 524-526, 2014.
doi:10.1109/LMWC.2014.2322755

5. Yoon, Y., J. Kim, and Y. Kim, "An unequal divider with different terminated impedances and different electrical lengths of four uniform transmission lines," Progress In Electromagnetics Research Letters, Vol. 80, 143-148, 2018.
doi:10.2528/PIERL18110604

6. Pakasiri, C. and S. Wang, "Dual-band compact Wilkinson power divider using common inductor and complex load," IEEE Access, Vol. 8, 97189-97195, 2020.
doi:10.1109/ACCESS.2020.2995405

7. Maktoomi, M. A. and M. S. Hashmi, "A performance enhanced port extended dual-band Wilkinson power divider," IEEE Access, Vol. 5, 11832-11840, 2017.
doi:10.1109/ACCESS.2017.2715283

8. Hallberg, W., M. A. Zen, D. Kuylenstierna, K. Buisman, and C. Fager, "A generalized 3-dB Wilkinson power divider/combiner with complex terminations," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 10, 4497-4506, Oct. 2018.
doi:10.1109/TMTT.2018.2859305

9. Maktoomi, M. A., M. S. Hashmi, A. P. Yadav, and V. Kumar, "A generic tri-band matching network," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 316-318, May 2016.
doi:10.1109/LMWC.2016.2548981

10. Bei, L., S. Zhang, and K. Huang, "Complex impedance-transformation out-of-phase power divider with high power-handling capability," Progress In Electromagnetics Research Letters, Vol. 53, 13-19, 2015.
doi:10.2528/PIERL15012006

11. Li, J., Y. Liu, S. Li, C. Yu, Y. Wu, and M. Su, "A novel multi-way power divider design with arbitrary complex terminated impedances," Progress In Electromagnetics Research B, Vol. 53, 315-331, 2013.
doi:10.2528/PIERB13061306

12. Banerjee, D., A. Saxena, and M. S. Hashmi, "A novel concept of virtual impedance for high frequency tri-band impedance matching networks," IEEE Trans. on Cir. and Sys. II, Vol. 65, No. 9, 1184-1188, 2018.

13. Maktoomi, M. A., M. S. Hashmi, and V. Panwar, "A dual-frequency matching network for FDCLs using dual-band λ/4-lines," Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015.
doi:10.2528/PIERL15020405

14. Zhang, W., Z. Ning, Y. Wu, C. Yu, S. Li, and Y. Liu, "Dual-band out-of-phase power divider with impedance transformation and wide frequency ratio," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 787-789, Dec. 2015.
doi:10.1109/LMWC.2015.2496784

15. Gupta, R., M. S. Hashmi, and M. H. Maktoomi, "An enhanced frequency ratio dual band balun augmented with high impedance transformation," IEEE Trans. Circuits Syst. II: Exp. Briefs, Vol. 67, No. 12, 2973-2977, 2020.
doi:10.1109/TCSII.2020.2984787

16. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency- dependent complex load impedance," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 611-613, Oct. 2009.

17. Maktoomi, M. A. and M. S. Hashmi, "A coupled-line based L-section DC-isolated dual-band real to real impedance transformer and its application to a dual-band T-junction power divider," Progress In Electromagnetics Research C, Vol. 55, 95-104, 2014.
doi:10.2528/PIERC14110502

18. Kumar, M., S. N. Islam, G. Sen, S. K. Parui, and S. Das, "Compact Wilkinson power divider with higher order harmonics suppression for LTE application," Progress In Electromagnetics Research Letters, Vol. 84, 23-29, 2019.
doi:10.2528/PIERL19021902

19. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

20. Zaidi, A. M., M. T. Beg, B. K. Kanaujia, Mainuddin, and K. Rambabu, "A compact dual-band out of phase power divider having microstrip compatibility," IEEE Trans. Circuits Syst. II: Exp. Briefs, Vol. 67, No. 12, 2998-3002, 2020.
doi:10.1109/TCSII.2020.2992753