Vol. 100
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-27
Numerical Assessment of Red Palm Weevil Detection Mechanism in Palm Trees Using CSRR Microwave Sensors
By
Progress In Electromagnetics Research Letters, Vol. 100, 63-71, 2021
Abstract
In this paper, a numerical electromagnetic model of a low-cost detection modality for red palm weevil pests in palm trees using resonant-based microwave sensors is presented. The developed sensor is based on the complementary split-ring resonator concept. The complementary resonator is easily modeled using printed circuit board technology, where the transmission response from two ports at ends of 50 Ω-matched transmission line is recorded. The microwave sensor has been designed to work at the 2.45 GHz ISM-band and is placed underneath a finite size 3D model of a palm tree trunk infested with the red palm weevil pest. For comparison purposes, the numerical simulation results are compared against a reference case of a healthy palm trunk. The results show the capability of the proposed numerical electromagnetic model in detecting presence of the red palm weevil in palm trees.
Citation
Mohammed M. Bait-Suwailam, "Numerical Assessment of Red Palm Weevil Detection Mechanism in Palm Trees Using CSRR Microwave Sensors," Progress In Electromagnetics Research Letters, Vol. 100, 63-71, 2021.
doi:10.2528/PIERL21080303
References

1. Al-Yahyai, R. and M. M. Khan, "Date palm status and perspective in oman," Date Palm Genetic Resources, Cultivar Assessment, Cultivation Practices and Novel Products, J. M. AlKhayri, S. M. Jain and D. V. Johnson, editors, Springer, the Netherlands, 2014.

2. Al-Zadjali, T., F. Abd-Allah, and H. El-Haidari, "Insect pests attacking date palms and dates in Sultanate of Oman," Egyptian Journal of Agricultural Research, Vol. 82, 51-59, 2006.

3. Dembilio, O. and J. Jacas, "Biology and management of red palm weevil," Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges, 13-26, Wakil, Romeno Faleiro, Miller, editors, Springer, 2015.

4. El Bouhssini, M. and J. Socorro, "Date palm pests and diseases: Integrated management guide," International Center for Agricultural Research in the Dry Areas, (ICARDA), Lebanon, 2018.

5. Elmer, H. S. and J. B. Carpenter, "Pests and diseases of the date palm," US Government Printing office, Agriculture Handbook, No. 527, 1978.

6. Ramachandran, C. P., "Effects of gamma radiation on various stages of red palm weevil Rhynchophorus ferrugineus F," J. Nucl. Agric. Biol., Vol. 20, No. 3, 218-221, 1991.

7. Massa, R., G. Panariello, D. Pinchera, et al. "Experimental and numerical evaluations on palm microwave heating for red palm weevil pest control," Scientific Reports, Vol. 7, 45299, 2017, doi:10.1038/srep45299.
doi:10.1038/srep45299

8. Massa, R., G. Panariello, et al. "Microwave heating: A promising and eco-compatible solution to fight the spread of red palm weevil," Arab Journal Prot., Vol. 37, No. 2, 134-148, 2019.

9. Rmili, H., K. Alkhalifeh, M. Zarouan, W. Zouch, and M. T. Islam, "Numerical analysis of the microwave treatment of palm trees infested with the red palm weevil pest by using a circular array of vivaldi antennas," IEEE Access, Vol. 8, 152342-152350, 2020.
doi:10.1109/ACCESS.2020.3017517

10. Rach, M., H. Gomis, O. Granado, M. Malumbres, and A. Campoy J. Martin, "On the design of a bioacoustic sensor for the early detection of the red palm weevil," Sensors, Vol. 13, No. 2, 1706-1729, Jan. 2013.
doi:10.3390/s130201706

11. Hussein, W., M. Hussein, and T. Becker, "Application of the signal processing technology in the detection of red palm weevil," 17th European Signal Processing Conference, 1597-1601, 2009.

12. Ashry, I., Y. Mao, et al. "Early detection of red palm weevil using distributed optical sensor," Scientific Rep., Vol. 10, 3155, 2020.
doi:10.1038/s41598-020-60171-7

13. Al-doski, J., S. B. Mansor, and H. Shafri, "Thermal imaging for pests detecting --- A review," Int. Journal Agric. For Plant, Vol. 2, 10-30, 2016.

14. Vidal, D. and R. Pitarma, "Infrared thermography applied to tree health assessment: A review," Agriculture, Vol. 9, No. 156, 2019.

15. Bannari, A., A. M. A. Mohamed, and A. El-Battay, "Water stress detection as an indicator of red palm weevil attack using worldview-3 data," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4000-4003, 2017.
doi:10.1109/IGARSS.2017.8127877

16. Al-Megren, S., H. Kurdi, and M. Aldaood, "A multi-UAV task allocation algorithm combatting red palm weevil infestation," Procedia Computer Science, Vol. 141, 88-95, 2018.
doi:10.1016/j.procs.2018.10.153

17. Koubaa, A., A. Aldawood, B. Saeed, et al. "Smart palm: An IoT framework for red palm weevil early detection," Agronomy, Vol. 10, 987, 2020.
doi:10.3390/agronomy10070987

18. Massa, R., M. D. Migliore, G. Panariello, D. Pinchera, F. Schettino, E. Caprio, et al. "Wide band permittivity measurements of palm (Phoenix canariensis) and rhynchophorus ferrugineus (coleoptera curculionidae) for RF pest control," J. Microw. Power Electromagn. Energy, Vol. 48, No. 3, 158-169, 2014.
doi:10.1080/08327823.2014.11689880

19. KT, M. S., M. A. Ansari, A. K. Jha, and M. J. Akhtar, "Design of SRR-based microwave sensor for characterization of magnetodielectric substrates," IEEE Microwave Wireless Comp. Lett., Vol. 27, 524-526, 2017.

20. Soffiatti, A., Y. Max, S. G. Silva, and L. M. de Mendonca, "Microwave metamaterial-based sensor for dielectric characterization of liquids," Sensors, Vol. 18, 1513, 2018.
doi:10.3390/s18051513

21. Alotaibi, S. A., Y. Cui, and M. M. Tentzeris, "CSRR based sensors for relative permittivity measurement with improved and uniform sensitivity throughout [0.9-10.9] GHz band," IEEE Sensors Journal, Vol. 20, No. 9, 4667-4678, 1 May 2020.
doi:10.1109/JSEN.2019.2951172

22. Yeo, J. and J. I. Lee, "Slot-loaded microstrip patch sensor antenna for high-sensitivity permittivity characterization," Electronics, Vol. 8, 502, 2019.
doi:10.3390/electronics8050502

23. Bait-Suwailam, M. M. and I. Bahadur, "Non-invasive microwave CSRR-based sensor for diabetic foot ulcers detection," 18th International Multi-Conference on Systems, Signals and Devices (SSD), 1237-1240, Tunis, 2021.
doi:10.1109/SSD52085.2021.9429469

24. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ϵ and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

25. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

26. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New York, USA, 2008.

27. Martin, F., "Metamaterials for wireless Communications, radiofrequency identification, and sensors (Review)," International Scholarly Research Network, Hindawi, 1-29, 2012.

28. Falcone, F., et al. "Effective negative-ϵ stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

29. Baena, J. D., J. Bonache, F. Martin, et al. "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

30. Bait-Suwailam, M. M., L. Youse, and O. M. Ramahi, "Analytical models for predicting the effective permittivity of complementary metamaterial structures," Microwave and Optical Technology Letters, Vol. 55, No. 7, 1565-1569, July 2013.
doi:10.1002/mop.27655