1. Al-Yahyai, R. and M. M. Khan, "Date palm status and perspective in oman," Date Palm Genetic Resources, Cultivar Assessment, Cultivation Practices and Novel Products, J. M. AlKhayri, S. M. Jain and D. V. Johnson, editors, Springer, the Netherlands, 2014. Google Scholar
2. Al-Zadjali, T., F. Abd-Allah, and H. El-Haidari, "Insect pests attacking date palms and dates in Sultanate of Oman," Egyptian Journal of Agricultural Research, Vol. 82, 51-59, 2006. Google Scholar
3. Dembilio, O. and J. Jacas, "Biology and management of red palm weevil," Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges, 13-26, Wakil, Romeno Faleiro, Miller, editors, Springer, 2015. Google Scholar
4. El Bouhssini, M. and J. Socorro, "Date palm pests and diseases: Integrated management guide," International Center for Agricultural Research in the Dry Areas, (ICARDA), Lebanon, 2018. Google Scholar
5. Elmer, H. S. and J. B. Carpenter, "Pests and diseases of the date palm," US Government Printing office, Agriculture Handbook, No. 527, 1978. Google Scholar
6. Ramachandran, C. P., "Effects of gamma radiation on various stages of red palm weevil Rhynchophorus ferrugineus F," J. Nucl. Agric. Biol., Vol. 20, No. 3, 218-221, 1991. Google Scholar
7. Massa, R., G. Panariello, D. Pinchera, et al. "Experimental and numerical evaluations on palm microwave heating for red palm weevil pest control," Scientific Reports, Vol. 7, 45299, 2017, doi:10.1038/srep45299.
doi:10.1038/srep45299 Google Scholar
8. Massa, R., G. Panariello, et al. "Microwave heating: A promising and eco-compatible solution to fight the spread of red palm weevil," Arab Journal Prot., Vol. 37, No. 2, 134-148, 2019. Google Scholar
9. Rmili, H., K. Alkhalifeh, M. Zarouan, W. Zouch, and M. T. Islam, "Numerical analysis of the microwave treatment of palm trees infested with the red palm weevil pest by using a circular array of vivaldi antennas," IEEE Access, Vol. 8, 152342-152350, 2020.
doi:10.1109/ACCESS.2020.3017517 Google Scholar
10. Rach, M., H. Gomis, O. Granado, M. Malumbres, and A. Campoy J. Martin, "On the design of a bioacoustic sensor for the early detection of the red palm weevil," Sensors, Vol. 13, No. 2, 1706-1729, Jan. 2013.
doi:10.3390/s130201706 Google Scholar
11. Hussein, W., M. Hussein, and T. Becker, "Application of the signal processing technology in the detection of red palm weevil," 17th European Signal Processing Conference, 1597-1601, 2009. Google Scholar
12. Ashry, I., Y. Mao, et al. "Early detection of red palm weevil using distributed optical sensor," Scientific Rep., Vol. 10, 3155, 2020.
doi:10.1038/s41598-020-60171-7 Google Scholar
13. Al-doski, J., S. B. Mansor, and H. Shafri, "Thermal imaging for pests detecting --- A review," Int. Journal Agric. For Plant, Vol. 2, 10-30, 2016. Google Scholar
14. Vidal, D. and R. Pitarma, "Infrared thermography applied to tree health assessment: A review," Agriculture, Vol. 9, No. 156, 2019. Google Scholar
15. Bannari, A., A. M. A. Mohamed, and A. El-Battay, "Water stress detection as an indicator of red palm weevil attack using worldview-3 data," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4000-4003, 2017.
doi:10.1109/IGARSS.2017.8127877 Google Scholar
16. Al-Megren, S., H. Kurdi, and M. Aldaood, "A multi-UAV task allocation algorithm combatting red palm weevil infestation," Procedia Computer Science, Vol. 141, 88-95, 2018.
doi:10.1016/j.procs.2018.10.153 Google Scholar
17. Koubaa, A., A. Aldawood, B. Saeed, et al. "Smart palm: An IoT framework for red palm weevil early detection," Agronomy, Vol. 10, 987, 2020.
doi:10.3390/agronomy10070987 Google Scholar
18. Massa, R., M. D. Migliore, G. Panariello, D. Pinchera, F. Schettino, E. Caprio, et al. "Wide band permittivity measurements of palm (Phoenix canariensis) and rhynchophorus ferrugineus (coleoptera curculionidae) for RF pest control," J. Microw. Power Electromagn. Energy, Vol. 48, No. 3, 158-169, 2014.
doi:10.1080/08327823.2014.11689880 Google Scholar
19. KT, M. S., M. A. Ansari, A. K. Jha, and M. J. Akhtar, "Design of SRR-based microwave sensor for characterization of magnetodielectric substrates," IEEE Microwave Wireless Comp. Lett., Vol. 27, 524-526, 2017. Google Scholar
20. Soffiatti, A., Y. Max, S. G. Silva, and L. M. de Mendonca, "Microwave metamaterial-based sensor for dielectric characterization of liquids," Sensors, Vol. 18, 1513, 2018.
doi:10.3390/s18051513 Google Scholar
21. Alotaibi, S. A., Y. Cui, and M. M. Tentzeris, "CSRR based sensors for relative permittivity measurement with improved and uniform sensitivity throughout [0.9-10.9] GHz band," IEEE Sensors Journal, Vol. 20, No. 9, 4667-4678, 1 May 2020.
doi:10.1109/JSEN.2019.2951172 Google Scholar
22. Yeo, J. and J. I. Lee, "Slot-loaded microstrip patch sensor antenna for high-sensitivity permittivity characterization," Electronics, Vol. 8, 502, 2019.
doi:10.3390/electronics8050502 Google Scholar
23. Bait-Suwailam, M. M. and I. Bahadur, "Non-invasive microwave CSRR-based sensor for diabetic foot ulcers detection," 18th International Multi-Conference on Systems, Signals and Devices (SSD), 1237-1240, Tunis, 2021.
doi:10.1109/SSD52085.2021.9429469 Google Scholar
24. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ϵ and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
25. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
26. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New York, USA, 2008.
27. Martin, F., "Metamaterials for wireless Communications, radiofrequency identification, and sensors (Review)," International Scholarly Research Network, Hindawi, 1-29, 2012. Google Scholar
28. Falcone, F., et al. "Effective negative-ϵ stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029 Google Scholar
29. Baena, J. D., J. Bonache, F. Martin, et al. "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
30. Bait-Suwailam, M. M., L. Youse, and O. M. Ramahi, "Analytical models for predicting the effective permittivity of complementary metamaterial structures," Microwave and Optical Technology Letters, Vol. 55, No. 7, 1565-1569, July 2013.
doi:10.1002/mop.27655 Google Scholar