1. Foschini, G. and M. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., Vol. 6, No. 3, 311-335, March 1998.
doi:10.1023/A:1008889222784 Google Scholar
2. Wallace, J., M. Jensen, A. Swindlehurst, and B. Jeffs, "Experimental characterization of the MIMO wireless channel: Data acquisition and analysis," IEEE Transactions Wireless Commun., Vol. 2, No. 2, 335-343, March 2003.
doi:10.1109/TWC.2003.808975 Google Scholar
3. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 740-747, September 1983.
doi:10.1109/TAP.1983.1143124 Google Scholar
4. Kildal, P.-S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Communications Magazine, Vol. 42, No. 12, 104-112, December 2004.
doi:10.1109/MCOM.2004.1367562 Google Scholar
5. Zhang, S., B. K. Lau, A. Sunesson, and S. He, "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4372-4380, September 2012.
doi:10.1109/TAP.2012.2207049 Google Scholar
6. Pllo, M., et al. "A broadband pattern diversity annular slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1596-1600, March 2012.
doi:10.1109/TAP.2011.2180314 Google Scholar
7. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, October 2003.
doi:10.1109/TAP.2003.817983 Google Scholar
8. Zhu, F.-G., J.-D. Xu, and Q. Xu, "Reduction of mutual coupling between closely packed antenna elements using defected ground structure," Electronics Letters, Vol. 45, No. 12, 601-602, 2009.
doi:10.1049/el.2009.0985 Google Scholar
9. Diallo, A., "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3063-3073, November 2006.
doi:10.1109/TAP.2006.883981 Google Scholar
10. Bait-Suwailam, M. M., O. Siddiqui, and O. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175 Google Scholar
11. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495 Google Scholar
12. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, June 2008.
doi:10.1109/TAP.2008.923306 Google Scholar
13. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565 Google Scholar
14. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meander- line resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156 Google Scholar
15. Park, J., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
doi:10.1109/ACCESS.2019.2923330 Google Scholar
16. Mohamadzade, B., A. Lalbakhsh, R. B. V. B. Simorangkir, A. Rezaee, and R. M. Hashmi, "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Progress In Electromagnetics Research M, Vol. 89, 179-187, 2020.
doi:10.2528/PIERM19100703 Google Scholar