1. Finn, H. M., "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," RCA Rev., Vol. 29, 414-465, 1968. Google Scholar
2. Conte, E., A. De Maio, and C. Galdi, "Statistical analysis of real clutter at different range resolutions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 3, 903-918, 2004.
doi:10.1109/TAES.2004.1337463 Google Scholar
3. Hong, S. W. and D. S. Han, "Performance analysis of an environmental adaptive CFAR detector," Mathematical Problems in Engineering, Vol. 2014, 2014. Google Scholar
4. Kononov, A. A., J.-H. Kim, J.-K. Kim, and G. Kim, "A new class of adaptive CFAR methods for nonhomogeneous environments," Progress In Electromagnetics Research B, Vol. 64, 145-170, 2015.
doi:10.2528/PIERB15091603 Google Scholar
5. Zaimbashi, A., "An adaptive cell averaging-based CFAR detector for interfering targets and clutter-edge situations," Digital Signal Processing, Vol. 31, 59-68, 2014.
doi:10.1016/j.dsp.2014.04.005 Google Scholar
6. Abbadi, A., H. Bouhedjeur, A. Bellabas, T. Menni, and F. Soltani, "Generalized closed-form expressions for CFAR detection in heterogeneous environment," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 7, 1011-1015, 2018.
doi:10.1109/LGRS.2018.2822782 Google Scholar
7. Zhang, X., R. Zhang, W. Sheng, X. Ma, Y. Han, J. Cui, and F. Kong, "Intelligent CFAR detector for non-homogeneous weibull clutter environment based on skewness," IEEE Radar Conference (RadarConf 18), 0322-0326, 2018. Google Scholar
8. Kamal, M. S. and J. Abdullah, "New algorithm for multi targets detection in clutter edge radar environments," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 18, No. 1, 420-427, 2020.
doi:10.11591/ijeecs.v18.i1.pp420-427 Google Scholar
9. Bandiera, F., O. Besson, D. Orlando, G. Ricci, and L. L. Scharf, "GLRT-based direction detectors in homogeneous noise and subspace interference," IEEE Transactions on Signal Processing, Vol. 55, No. 6, 2386-2394, 2007.
doi:10.1109/TSP.2007.893927 Google Scholar
10. Ciuonzo, D., A. De Maio, and D. Orlando, "A unifying framework for adaptive radar detection in homogeneous plus structured interference --- Part II: Detectors design," IEEE Transactions on Signal Processing, Vol. 64, No. 11, 2907-2919, 2016.
doi:10.1109/TSP.2016.2519005 Google Scholar
11. Ciuonzo, D., A. De Maio, and P. S. Rossi, "A systematic framework for composite hypothesis testing of independent Bernoulli trials," IEEE Signal Processing Letters, Vol. 22, No. 9, 1249-1253, 2015.
doi:10.1109/LSP.2015.2395811 Google Scholar
12. Jiang, W., Y. Huang, G. Cui, and J. Yang, "Positive definite matrix space based detector with limited training samples for multiple target situations," Progress In Electromagnetics Research M, Vol. 60, 141-156, 2017.
doi:10.2528/PIERM17062003 Google Scholar
13. Skolnik, M. I., Introduction to Radar Systems, McGraw-Hill, 2001.
14. Farina, A. and F. A. Studer, "A review of CFAR detection techniques in radar systems," Microwave Journal, Vol. 29, 115, 1986. Google Scholar
15. Trunk, G. V., "Radar properties of non-Rayleigh sea clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 8, No. 2, 196-204, 1972.
doi:10.1109/TAES.1972.309490 Google Scholar
16. Ward, K. D., "Compound representation of high resolution sea clutter," Electronics Letters, Vol. 17, No. 16, 561-563, 1981.
doi:10.1049/el:19810394 Google Scholar
17. Chan, H. C., "Radar sea-clutter at low grazing angles," IEE Proceedings F --- Radar and Signal Processing, Vol. 137, No. 2, 102-112, 1990.
doi:10.1049/ip-f-2.1990.0015 Google Scholar
18. De Maio, A., A. Farina, and G. Foglia, "Knowledge-aided Bayesian radar detectors & their application to live data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 170-183, 2010.
doi:10.1109/TAES.2010.5417154 Google Scholar
19. Sekine, M., Y. Mao, and Y. H. Mao, Weibull Radar Clutter, IET, 1990.
doi:10.1049/PBRA003E
20. Hongsen, X. and Z. Kun, "CFAR detector using GIS information," 2010 Second IITA International Conference on Geoscience and Remote Sensing, Vol. 2, 272-274, 2010.
doi:10.1109/IITA-GRS.2010.5604216 Google Scholar
21. Pourmottaghi, A., M. R. Taban, and S. Gazor, "A CFAR detector in a nonhomogenous Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1747-1758, 2012.
doi:10.1109/TAES.2012.6178094 Google Scholar
22. Kong, L., X. Y. Peng, and T. Zhang, "A homogenous reference cells selector for CFAR detector in highly heterogeneous environment," Progress In Electromagnetics Research C, Vol. 41, 175-188, 2013.
doi:10.2528/PIERC13052604 Google Scholar
23. Song, H., S. Lu, W. Yi, and L. Kong, "CFAR detector based on clutter partition in heterogeneous background," 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), 288-291, 2015.
doi:10.1109/ChinaSIP.2015.7230409 Google Scholar
24. Lu, S., W. Yi, G. Cui, L. Kong, and X. Yang, "Design and application of dynamic environmental knowledge base," IET Radar, Sonar & Navigation, Vol. 10, No. 16, 1118-1126, 2016.
doi:10.1049/iet-rsn.2015.0516 Google Scholar
25. Lu, S., W. Yi, W. Liu, G. Cui, L. Kong, and X. Yang, "Data-dependent clustering-CFAR detector in heterogeneous environment," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 1, 476-485, 2017.
doi:10.1109/TAES.2017.2740065 Google Scholar
26. Darrah, C. A. and D. W. Luke, "Site-specific clutter modeling using DMA digital terrain elevation data (DTED), digital feature analysis data (DFAD), and Lincoln Laboratory five frequency clutter amplitude data," Proceedings of the 1996 IEEE National Radar Conference, 178-183, 1996.
doi:10.1109/NRC.1996.510677 Google Scholar
27. Kurekin, A., D. Radford, K. Lever, D. Marshall, and L. K. Shark, "New method for generating site- specific clutter map for land-based radar by using multimodal remote-sensing images and digital terrain data," IET Radar, Sonar & Navigation, Vol. 5, No. 3, 374-388, 2011.
doi:10.1049/iet-rsn.2010.0036 Google Scholar
28. Guerci, J. R. and E. J. Baranoski, "Knowledge-aided adaptive radar at DARPA: An overview," IEEE Signal Processing Magazine, Vol. 23, No. 1, 41-50, 2006.
doi:10.1109/MSP.2006.1593336 Google Scholar
29. Marconcini, M., T. Esch, A. Felbier, and W. Heldens, "High-resolution global monitoring of urban settlements," Proc. of REAL CORP, 1-5, 2013. Google Scholar
30. Goldstein, G. B., "False-alarm regulation in log-normal and Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 1, 84-92, 1973.
doi:10.1109/TAES.1973.309705 Google Scholar
31. Ravid, R. A. F. I. and N. A. D. A. V. Levanon, "Maximum-likelihood CFAR for Weibull background," IEE Proceedings F --- Radar and Signal Processing, Vol. 139, No. 3, 256-264, 1992.
doi:10.1049/ip-f-2.1992.0033 Google Scholar
32. Weiss, M., "Analysis of some modified cell-averaging CFAR processors in multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 18, No. 1, 102-114, 1982.
doi:10.1109/TAES.1982.309210 Google Scholar
33. Rohling, H., "Radar CFAR thresholding in clutter and multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, No. 4, 608-621, 1983.
doi:10.1109/TAES.1983.309350 Google Scholar
34. Hansen, V. G. and J. H. Sawyers, "Detectability loss due to "Greatest Of" selection in a cell-averaging CFAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 115-118, 1980.
doi:10.1109/TAES.1980.308885 Google Scholar
35. De Maio, A., A. Farina, and G. Foglia, "Design and experimental validation of knowledge-based constant false alarm rate detectors," IET Radar, Sonar & Navigation, Vol. 1, No. 4, 308-316, 2007.
doi:10.1049/iet-rsn:20060113 Google Scholar
36. Rouabah, A., H. Zeraoula, M. H. Hamadouche, and K. Tourche, "Proposal for a radar detection architecture based on the knowledge based systems exploitation," International Conference on Electrical Engineering and Control Applications, 1047-1060, 2019. Google Scholar
37. Magaz, B., A. Belouchrani, and M. Hamadouche, "A new adaptive linear combined CFAR detector in presence of interfering targets," Progress In Electromagnetics Research B, Vol. 34, 367-387, 2011.
doi:10.2528/PIERB11012603 Google Scholar
38. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria," Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011.
doi:10.2528/PIERB10122502 Google Scholar
39. Gandhi, P. P. and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 4, 427-445, 1988.
doi:10.1109/7.7185 Google Scholar
40. Qu, Y. and N. C. Karmakar, "Novel CFAR detection," International Conference on Electrical and Computer Engineering, 366-369, 2004. Google Scholar
41. El Mashade, M. B., "Analysis of CFAR detection of fluctuating targets," Progress In Electromagnetics Research C, Vol. 2, 65-94, 2008.
doi:10.2528/PIERC08020802 Google Scholar
42. Analog Devices, , TigerSHARC embedded processors, Dec. 2006.