Vol. 101
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-14
Design and Measurement of Triple h -Slotted DGS Printed Antenna with Machine Learning
By
Progress In Electromagnetics Research Letters, Vol. 101, 117-125, 2021
Abstract
This paper presents the design and measurements of a dual-band Triple H-Defected Ground Structure (Triple H-DGS) antenna. DGS has proven to be successful in the design of multiband antennas; however because of the lack of a standard approach, the determination of the exact position of the Triple H-DGS requires rigorous and lengthy numerical computations. The aim of the current work is to present a state-of-the-art innovative, efficient, and accurate solution based on Machine Learning (ML) techniques. The design is based on Substrate Integrated Waveguide (SIW) technology which provides low cost, small size, and convenient integration with planar circuits. The antenna is fabricated on a Roger 5880 substrate with a thickness of 1.6 mm, relative dielectric constant of 2.2, and tangent loss of 0.0009. The proposed antenna was developed using a hybrid solution based on CST Microwave Studio assisted by ML, and the fabricated prototype was measured using both ROHDE & SCHWARZ ZVB20 network analyser and an anechoic chamber setting. The measurement results show good agreement with the simulation. The antenna demonstrates a dual-band performance at centre frequencies of 12.67 GHz and 14.56 GHz, for which the respective antenna gains are 7.03 dBi and 7.38 dBi, and antenna directivities of 7.77 dB and 8.13 dB, respectively. The antenna total efficiencies are 95.25% and 95.60%, at the corresponding centre frequencies. The developed ML based technique shows good accuracies of about 98% in the determination of the DGS position and saves more than 99% of the computational time. The developed antenna is compact, simple in structure, and can be used for different applications in the Ku band.
Citation
Mohammed Farouk Nakmouche, Abdemegeed Mahmoud Allam, Diaa E. Fawzy, and Mahmoud Abdalla, "Design and Measurement of Triple h -Slotted DGS Printed Antenna with Machine Learning," Progress In Electromagnetics Research Letters, Vol. 101, 117-125, 2021.
doi:10.2528/PIERL21090501
References

1. Balanis, C. A., Antenna Theory Analysis and Design, 4th Edition, Wiley, 2016.
doi:Error connecting to the authentication service. Please try again later or contact support.

2. Garg, R., P. Bartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House Inc., 2001.
doi:(org.crossref.qs.security.CredentialException occured 3/2/22 12:27 AM)

3. Ali, W., E. Hamad, M. Bassiuny, and M. Hamdallah, "Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications," Radioengineering, Vol. 26, No. 1, 78-84, 2017.
doi:10.13164/re.2017.0078

4. Saroj, A. K., M. G. Siddiqui, M. Kumar, and J. Ansari, "Design of multiband quad-rectangular shaped microstrip antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 59, 213-221, 2017.
doi:10.2528/PIERM17071003

5. Fertas, F., M. Challal, and K. Fertas, "Miniaturized quintuple band antenna for multiband applications," Progress In Electromagnetics Research M, Vol. 89, 83-92, 2020.
doi:10.2528/PIERM19111905

6. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905

7. Saini, G. S. and R. Kumar, "A low profile patch antenna for Ku-band applications," Int. J. Electron. Lett., 1-11, 2019.

8. Vijayvergiya, P. L. and R. K. Panigrahi, "Single-layer single-patch dual band antenna for satellite applications," IET Microwaves, Antennas Propag., Vol. 11, No. 5, 664-669, 2017.
doi:10.1049/iet-map.2016.0393

9. Hassan, M. M., M. Hussain, A. A. Khan, I. Rashid, and F. A. Bhatti, "Dual-band B-shaped antenna array for satellite applications," Int. J. Microw. Wirel. Technol., November 2020.

10. Mener, S., R. Gillard, and L. Roy, "A dual-band dual-circular-polarization antenna for Ka-band satellite communications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 274-277, 2017.
doi:10.1109/LAWP.2016.2572261

11. Mao, X., S. Gao, Y. Wang, and J. T. Sri Sumantyo, "Compact broadband dual-sense circularly polarized microstrip antenna/array with enhanced isolation," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7073-7082, 2017.
doi:10.1109/TAP.2017.2766440

12. Swetha, A. and K. R. Naidu, "Miniaturized antenna using DGS and meander structure for dual- band application," Microw. Opt. Technol. Lett., Vol. 62, No. 11, 3556-3563, 2020.
doi:10.1002/mop.32462

13. Alam, T. and M. T. Islam, "A dual-band antenna with dual-circular polarization for nanosatellite payload application," IEEE Access, Vol. 6, 78521-78529, 2018.
doi:10.1109/ACCESS.2018.2885067

14. Wu, J., Y. J. Cheng, H. Bin Wang, Y. C. Zhong, D. Ma, and Y. Fan, "A wideband dual circularly polarized full-corporate waveguide array antenna fed by triple-resonant cavities," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 2135-2139, 2017.
doi:10.1109/TAP.2016.2631953

15. Ding, X., S. Wu, Z. Zhao, Z. Nie, and Q. H. Liu, "Meta-surface loading broadband and high- aperture efficiency dual circularly polarized patch antenna," Int. J. RF Microw. Comput. Eng., March 2021.

16. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," Proceedings --- CAMA 2019: IEEE International Conference on Antenna Measurements and Applications, 2019.

17. Zeng, J. and K. Luk, "A simple wideband magnetoelectric dipole antenna with a defected ground structure," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1497-1500, Aug. 2018.
doi:10.1109/LAWP.2018.2850890

18. Zhou, J., Y. Rao, D. Yang, H. J. Qian, and X. Luo, "Compact wideband BPF with wide stopband using substrate integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 4, 353-356, April 2021.
doi:10.1109/LMWC.2021.3053756

19. Han, C., D. Tang, Z. Deng, H. J. Qian, and X. Luo, "Filtering power divider with ultrawide stopband and wideband low radiation loss using substrate integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 2, 113-116, February 2021.
doi:10.1109/LMWC.2020.3036419

20. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng., ICEEE 2021, 2021.

21. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, and M. Fathy Abo Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021.

22. Kishore, N., G. Upadhyay, V. S. Tripathi, and A. Prakash, "Dual band rectangular patch antenna array with defected ground structure for ITS application," AEU | Int. J. Electron. Commun., Vol. 96, 228-237, 2018.

23. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," The 6th International Conference on Image and Signal Processing and Their Applications, November 2019.

24. El Misilmani, H. M., T. Naous, and S. K. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 10, 2020.
doi:10.2528/PIERM21083103

25. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.1016/j.aeue.2021.153739

26. Sharma, K. and G. P. Pandey, "Efficient modelling of compact microstrip antenna using machine learning," AEU --- International Journal of Electronics and Communications, Vol. 135, 153739, 2021, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2021.153739.
doi:10.1109/TAP.2020.2966051

27. Sharma, Y., H. H. Zhang, and H. Xin, "Machine learning techniques for optimizing design of double T-shaped monopole antenna," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5658-5663, July 2020, doi: 10.1109/TAP.2020.2966051.
doi:10.2528/PIERL19081904

28. Derbal, M. C., A. Zeghdoud, and M. Nedil, "A dual band notched UWB antenna with optimized DGS using genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 88, 89-95, 2020.

29. Kandwal, A., "Compact dual band antenna design for Ku/Ka band applications," AEM, Vol. 6, No. 4, 1-5, October 2017.
doi:10.2528/PIERL19122604

30. Derbal, M. C. and M. Nedil, "A high gain dual band rectenna for RF energy harvesting applications," Progress In Electromagnetics Research Letters, Vol. 90, 29-36, 2020.

31. Thanki, P. and F. Raval, "I-shaped frequency and pattern reconfigurable antenna for WiMAX and WLAN applications," Progress In Electromagnetics Research Letters, Vol. 97, 149-156, 2021.
doi:10.2528/PIERC21041001

32. Saikia, B., P. Dutta, and K. Borah, "A compact dual asymmetric L-slot frequency reconfigurable microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 113, 59-68, 2021.