1. Balanis, C. A., Antenna Theory Analysis and Design, 4th Edition, Wiley, 2016.
doi:Error connecting to the authentication service. Please try again later or contact support.
2. Garg, R., P. Bartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House Inc., 2001.
doi:(org.crossref.qs.security.CredentialException occured 3/2/22 12:27 AM)
3. Ali, W., E. Hamad, M. Bassiuny, and M. Hamdallah, "Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications," Radioengineering, Vol. 26, No. 1, 78-84, 2017.
doi:10.13164/re.2017.0078 Google Scholar
4. Saroj, A. K., M. G. Siddiqui, M. Kumar, and J. Ansari, "Design of multiband quad-rectangular shaped microstrip antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 59, 213-221, 2017.
doi:10.2528/PIERM17071003 Google Scholar
5. Fertas, F., M. Challal, and K. Fertas, "Miniaturized quintuple band antenna for multiband applications," Progress In Electromagnetics Research M, Vol. 89, 83-92, 2020.
doi:10.2528/PIERM19111905 Google Scholar
6. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905 Google Scholar
7. Saini, G. S. and R. Kumar, "A low profile patch antenna for Ku-band applications," Int. J. Electron. Lett., 1-11, 2019. Google Scholar
8. Vijayvergiya, P. L. and R. K. Panigrahi, "Single-layer single-patch dual band antenna for satellite applications," IET Microwaves, Antennas Propag., Vol. 11, No. 5, 664-669, 2017.
doi:10.1049/iet-map.2016.0393 Google Scholar
9. Hassan, M. M., M. Hussain, A. A. Khan, I. Rashid, and F. A. Bhatti, "Dual-band B-shaped antenna array for satellite applications," Int. J. Microw. Wirel. Technol., November 2020. Google Scholar
10. Mener, S., R. Gillard, and L. Roy, "A dual-band dual-circular-polarization antenna for Ka-band satellite communications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 274-277, 2017.
doi:10.1109/LAWP.2016.2572261 Google Scholar
11. Mao, X., S. Gao, Y. Wang, and J. T. Sri Sumantyo, "Compact broadband dual-sense circularly polarized microstrip antenna/array with enhanced isolation," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7073-7082, 2017.
doi:10.1109/TAP.2017.2766440 Google Scholar
12. Swetha, A. and K. R. Naidu, "Miniaturized antenna using DGS and meander structure for dual- band application," Microw. Opt. Technol. Lett., Vol. 62, No. 11, 3556-3563, 2020.
doi:10.1002/mop.32462 Google Scholar
13. Alam, T. and M. T. Islam, "A dual-band antenna with dual-circular polarization for nanosatellite payload application," IEEE Access, Vol. 6, 78521-78529, 2018.
doi:10.1109/ACCESS.2018.2885067 Google Scholar
14. Wu, J., Y. J. Cheng, H. Bin Wang, Y. C. Zhong, D. Ma, and Y. Fan, "A wideband dual circularly polarized full-corporate waveguide array antenna fed by triple-resonant cavities," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 2135-2139, 2017.
doi:10.1109/TAP.2016.2631953 Google Scholar
15. Ding, X., S. Wu, Z. Zhao, Z. Nie, and Q. H. Liu, "Meta-surface loading broadband and high- aperture efficiency dual circularly polarized patch antenna," Int. J. RF Microw. Comput. Eng., March 2021. Google Scholar
16. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," Proceedings --- CAMA 2019: IEEE International Conference on Antenna Measurements and Applications, 2019. Google Scholar
17. Zeng, J. and K. Luk, "A simple wideband magnetoelectric dipole antenna with a defected ground structure," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1497-1500, Aug. 2018.
doi:10.1109/LAWP.2018.2850890 Google Scholar
18. Zhou, J., Y. Rao, D. Yang, H. J. Qian, and X. Luo, "Compact wideband BPF with wide stopband using substrate integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 4, 353-356, April 2021.
doi:10.1109/LMWC.2021.3053756 Google Scholar
19. Han, C., D. Tang, Z. Deng, H. J. Qian, and X. Luo, "Filtering power divider with ultrawide stopband and wideband low radiation loss using substrate integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 2, 113-116, February 2021.
doi:10.1109/LMWC.2020.3036419 Google Scholar
20. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng., ICEEE 2021, 2021. Google Scholar
21. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, and M. Fathy Abo Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021. Google Scholar
22. Kishore, N., G. Upadhyay, V. S. Tripathi, and A. Prakash, "Dual band rectangular patch antenna array with defected ground structure for ITS application," AEU | Int. J. Electron. Commun., Vol. 96, 228-237, 2018. Google Scholar
23. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," The 6th International Conference on Image and Signal Processing and Their Applications, November 2019. Google Scholar
24. El Misilmani, H. M., T. Naous, and S. K. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 10, 2020.
doi:10.2528/PIERM21083103 Google Scholar
25. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.1016/j.aeue.2021.153739 Google Scholar
26. Sharma, K. and G. P. Pandey, "Efficient modelling of compact microstrip antenna using machine learning," AEU --- International Journal of Electronics and Communications, Vol. 135, 153739, 2021, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2021.153739.
doi:10.1109/TAP.2020.2966051 Google Scholar
27. Sharma, Y., H. H. Zhang, and H. Xin, "Machine learning techniques for optimizing design of double T-shaped monopole antenna," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5658-5663, July 2020, doi: 10.1109/TAP.2020.2966051.
doi:10.2528/PIERL19081904 Google Scholar
28. Derbal, M. C., A. Zeghdoud, and M. Nedil, "A dual band notched UWB antenna with optimized DGS using genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 88, 89-95, 2020. Google Scholar
29. Kandwal, A., "Compact dual band antenna design for Ku/Ka band applications," AEM, Vol. 6, No. 4, 1-5, October 2017.
doi:10.2528/PIERL19122604 Google Scholar
30. Derbal, M. C. and M. Nedil, "A high gain dual band rectenna for RF energy harvesting applications," Progress In Electromagnetics Research Letters, Vol. 90, 29-36, 2020. Google Scholar
31. Thanki, P. and F. Raval, "I-shaped frequency and pattern reconfigurable antenna for WiMAX and WLAN applications," Progress In Electromagnetics Research Letters, Vol. 97, 149-156, 2021.
doi:10.2528/PIERC21041001 Google Scholar
32. Saikia, B., P. Dutta, and K. Borah, "A compact dual asymmetric L-slot frequency reconfigurable microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 113, 59-68, 2021. Google Scholar