1. Liu, P. Y., L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, and B. Liedberg, "Cell refractive index for cell biology and disease diagnosis: Past, present and future," Lab on a Chip, Vol. 16, No. 4, 634-644, 2016.
doi:10.1039/C5LC01445J Google Scholar
2. Danaie, M. and B. Kiani, "Design of a label-free photonic crystal refractive index sensor for biomedical applications," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 31, 89-98, 2018.
doi:10.1016/j.photonics.2018.06.004 Google Scholar
3. Ayyanar, N., G. Thavasi Raja, M. Sharma, and D. Sriram Kumar, "Photonic crystal fiber-based refractive index sensor for early detection of cancer," IEEE Sensors J., Vol. 18, No. 17, 7093-7099, 2018.
doi:10.1109/JSEN.2018.2854375 Google Scholar
4. Roy, S. K. and P. Sharan, "Photonic crystal based sensor for DNA analysis of cancer detection," Silicon Photonics & High Performance Computing, Vol. 718, 79-85, 2018. Google Scholar
5. Emami Nejad, H., A. Mir, and A. Farmani, "Supersensitive and tunable nano-biosensor for cancer detection," IEEE Sensors J., Vol. 19, No. 13, 4874-4881, 2019.
doi:10.1109/JSEN.2019.2899886 Google Scholar
6. Parvin, T., K. Ahmed, A. M. Alatwi, and A. N. Z. Rashed, "Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection," Optical Review, Vol. 28, No. 01, 134-143, 2021.
doi:10.1007/s10043-021-00644-w Google Scholar
7. Segovia-Chaves, F. and H. Vinck-Posada, "Superconductor-semiconductor one-dimensional photonic crystal using a cancer cell as a defect layer," Optik, Vol. 224, 165465, 2020.
doi:10.1016/j.ijleo.2020.165465 Google Scholar
8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
9. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
10. Bounaas, F. and A. Labbani, "High sensitivity temperature sensor based on photonic crystal resonant cavity," Progress In Electromagnetics Research Letters, Vol. 90, 85-90, 2020.
doi:10.2528/PIERL20010204 Google Scholar
11. Hosseinzadeh Sani, M., A. Ghanbari, and H. Saghaei, "An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure," Opt. Quant. Electron., Vol. 52, No. 6, 295, 2020.
doi:10.1007/s11082-020-02418-1 Google Scholar
12. Moumeni, I. and A. Labbani, "Very high efficient of 1 × 2, 1 × 4 and 1 × 8 Y beam splitters based on photonic crystal ring slot cavity," Opt. Quant. Electron., Vol. 53, No. 2, 129, 2021.
doi:10.1007/s11082-021-02780-8 Google Scholar
13. Sana, A. K., K. Honzawa, Y. Amemiya, and S. Yokoyama, "Silicon photonic crystal resonators for label free biosensor," Japanese Journal of Applied Physics, Vol. 55, No. 45, 04EM11, 2016.
doi:10.7567/JJAP.55.04EM11 Google Scholar
14. Pitruzzello, G. and T. F. Krauss, "Photonic crystal resonances for sensing and imaging," Journal of Optics, Vol. 20, No. 07, 073004, 2018.
doi:10.1088/2040-8986/aac75b Google Scholar
15. Abirami, N. and K. S. Joseph Wilson, "Investigation on photonic band gap of a magneto photonic crystal," Optik, Vol. 208, 164092, 2020.
doi:10.1016/j.ijleo.2019.164092 Google Scholar
16. Naghizade, S. and H. Saghaei, "A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber," Optik, Vol. 222, 165419, 2020.
doi:10.1016/j.ijleo.2020.165419 Google Scholar
17. Ankita, B. S. and A. Bhargava, "Biosensor application of one-dimensional photonic crystal for malaria diagnosis," Plasmonics, Vol. 16, No. 01, 59-63, 2021.
doi:10.1007/s11468-020-01259-8 Google Scholar
18. Aly, A. H., Z. A. Zaky, A. S. Shalaby, A. M. Ahmed, and D. Vigneswaran, "Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor," Physica Scripta, Vol. 95, No. 03, 035510, 2020.
doi:10.1088/1402-4896/ab53f5 Google Scholar
19. Mehaney, A., "Phononic crystal as a neutron detector," Ultrasonics, Vol. 93, 37-42, 2019.
doi:10.1016/j.ultras.2018.10.012 Google Scholar
20. Segovia-Chaves, F., "Transmittance spectrum of a defective one-dimensional photonic crystal with a protein solution," Optik, Vol. 231, 166408, 2021.
doi:10.1016/j.ijleo.2021.166408 Google Scholar
21. Zaky, Z. A., A. M. Ahmed, A. S. Shalaby, and A. H. Aly, "Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimization," Scientific Reports, Vol. 10, No. 01, 1-9, 2020.
doi:10.1038/s41598-020-66427-6 Google Scholar
22. Ramanujam, N. R., S. K. Patel, N. Manohar Reddy, S. A. Taya, D. Vigneswaran, and M. S. Mani Rajan, "One-dimensional ring mirror-defect photonic crystal for detection of mycobacterium tuberculosis bacteria," Optik, Vol. 219, 165097, 2020.
doi:10.1016/j.ijleo.2020.165097 Google Scholar
23. Habli, O., Y. Bouazzi, and M. Kanzari, "Gas sensing using one-dimensional photonic crystal nanoresonators," Progress In Electromagnetics Research C, Vol. 92, 251-263, 2019.
doi:10.2528/PIERC19011106 Google Scholar
24. Lee, C.-M. and Y. Xu, "A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials," Journal of Sound and Vibration, Vol. 326, No. 1-2, 290-301, 2009.
doi:10.1016/j.jsv.2009.04.037 Google Scholar
25. Fan, C., J. Wang, S. Zhu, J. He, P. Ding, and E. Liang, "Optical properties in one-dimensional graded soft photonic crystals with ferrofluids," Journal of Optics,, Vol. 15, No. 5, 055103, 2013.
doi:10.1088/2040-8978/15/5/055103 Google Scholar
26. Yeh, P., Optical Waves in Layered Media, Vol. 95, Wiley, New York, 1988.
27. Liang, X. J., A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, "Determining refractive index of single living cell using an integrated microchip," Sensors and Actuators A: Physical, Vol. 133, No. 02, 349-354, 2007.
doi:10.1016/j.sna.2006.06.045 Google Scholar
28. Ramanujam, N. R. and K. S. J. Wilson, "Optical properties of silver nanocomposites and photonic band gap --- Pressure dependence," Optics Communications, Vol. 368, 174-179, 2016.
doi:10.1016/j.optcom.2016.02.018 Google Scholar
29. Segovia-Chaves, F., H. A. Elsayed, A. Mehaney, and A. M. Ahmed, "Defect mode modulation for a protein solution cavity surrounded by graphene and nanocomposite layers," Optik, Vol. 242, 167161, 2021.
doi:10.1016/j.ijleo.2021.167161 Google Scholar
30. Kok, M. H., R. Ma, J. C. W. Lee, W. Y. Tam, C. T. Chan, P. Sheng, and K. W. Cheah, "Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion," Physical Review E, Vol. Physical, No. 4, 047601, 2005.
doi:10.1103/PhysRevE.72.047601 Google Scholar
31. Segovia-Chaves, F. and J. C. Trujillo Yague, "Sensitivity optimization of cells immersed in a cavity surrounded by thin graphene layers in one-dimensional photonic crystals," Optik, Vol. 231, 166355, 2021.
doi:10.1016/j.ijleo.2021.166355 Google Scholar
32. Bijalwan, A., B. K. Singh, and V. Rastogi, "Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells," Optik, Vol. 226, 165994, 2021.
doi:10.1016/j.ijleo.2020.165994 Google Scholar
33. Aly, A. H. and Z. A. Zaky, "Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor," Cryogenics, Vol. 104, 102991, 2019.
doi:10.1016/j.cryogenics.2019.102991 Google Scholar
34. Ramanujam, N. R., I. S. Amiri, S. A. Taya, S. Olyaee, R. Udaiyakumar, A. P. Pandian, K. J. Wilson, P. Mahalakshmi, and P. P. Yupapin, "Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal," Microsystem Technologies, Vol. 25, No. 1, 189-196, 2019.
doi:10.1007/s00542-018-3947-6 Google Scholar
35. Panda, A. and P. Puspa Devi, "Photonic crystal biosensor for refractive index based cancerous cell detection," Optical Fiber Technology, Vol. 54, 102123, 2020.
doi:10.1016/j.yofte.2019.102123 Google Scholar
36. Jindal, S., S. Sobti, M. Kumar, S. Sharma, and M. K. Pal, "Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection," IEEE Sensors J., Vol. 16, 3705-3710, 2016.
doi:10.1109/JSEN.2016.2536105 Google Scholar