Vol. 117
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-06
Optimized Cancer Cells Sensor Based on 1D Photonic Crystal Vertical Slot Structure
By
Progress In Electromagnetics Research C, Vol. 117, 239-249, 2021
Abstract
This paper reports the investigation of a one-dimensional (1D) photonic crystal (PhC) sensor with improved performance for detecting different categories of cancer cells. The sensing region consists of a vertical slot (VS) introduced inside the periodic Bragg mirror. The structure operating principle is based on the change of the refractive index (RI) of the analyte incorporated in the VS, which leads to the shift in the resonant wavelength peak. The sensing properties have been numerically simulated and analyzed using the transfer matrix method (TMM). The study shows that the optimization process of the structure tends to enhance sensitivity. From the result of the numerical simulation, it is found that the final optimized sensor exhibits the higher sensitivity of 3201 nm/RIU than other similar devices. We believe that the obtained results will be valuable for designing highly sensitive PhC sensors.
Citation
Faiza Bounaas, and Amel Labbani, "Optimized Cancer Cells Sensor Based on 1D Photonic Crystal Vertical Slot Structure," Progress In Electromagnetics Research C, Vol. 117, 239-249, 2021.
doi:10.2528/PIERC21100706
References

1. Liu, P. Y., L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, and B. Liedberg, "Cell refractive index for cell biology and disease diagnosis: Past, present and future," Lab on a Chip, Vol. 16, No. 4, 634-644, 2016.
doi:10.1039/C5LC01445J

2. Danaie, M. and B. Kiani, "Design of a label-free photonic crystal refractive index sensor for biomedical applications," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 31, 89-98, 2018.
doi:10.1016/j.photonics.2018.06.004

3. Ayyanar, N., G. Thavasi Raja, M. Sharma, and D. Sriram Kumar, "Photonic crystal fiber-based refractive index sensor for early detection of cancer," IEEE Sensors J., Vol. 18, No. 17, 7093-7099, 2018.
doi:10.1109/JSEN.2018.2854375

4. Roy, S. K. and P. Sharan, "Photonic crystal based sensor for DNA analysis of cancer detection," Silicon Photonics & High Performance Computing, Vol. 718, 79-85, 2018.

5. Emami Nejad, H., A. Mir, and A. Farmani, "Supersensitive and tunable nano-biosensor for cancer detection," IEEE Sensors J., Vol. 19, No. 13, 4874-4881, 2019.
doi:10.1109/JSEN.2019.2899886

6. Parvin, T., K. Ahmed, A. M. Alatwi, and A. N. Z. Rashed, "Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection," Optical Review, Vol. 28, No. 01, 134-143, 2021.
doi:10.1007/s10043-021-00644-w

7. Segovia-Chaves, F. and H. Vinck-Posada, "Superconductor-semiconductor one-dimensional photonic crystal using a cancer cell as a defect layer," Optik, Vol. 224, 165465, 2020.
doi:10.1016/j.ijleo.2020.165465

8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

9. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

10. Bounaas, F. and A. Labbani, "High sensitivity temperature sensor based on photonic crystal resonant cavity," Progress In Electromagnetics Research Letters, Vol. 90, 85-90, 2020.
doi:10.2528/PIERL20010204

11. Hosseinzadeh Sani, M., A. Ghanbari, and H. Saghaei, "An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure," Opt. Quant. Electron., Vol. 52, No. 6, 295, 2020.
doi:10.1007/s11082-020-02418-1

12. Moumeni, I. and A. Labbani, "Very high efficient of 1 × 2, 1 × 4 and 1 × 8 Y beam splitters based on photonic crystal ring slot cavity," Opt. Quant. Electron., Vol. 53, No. 2, 129, 2021.
doi:10.1007/s11082-021-02780-8

13. Sana, A. K., K. Honzawa, Y. Amemiya, and S. Yokoyama, "Silicon photonic crystal resonators for label free biosensor," Japanese Journal of Applied Physics, Vol. 55, No. 45, 04EM11, 2016.
doi:10.7567/JJAP.55.04EM11

14. Pitruzzello, G. and T. F. Krauss, "Photonic crystal resonances for sensing and imaging," Journal of Optics, Vol. 20, No. 07, 073004, 2018.
doi:10.1088/2040-8986/aac75b

15. Abirami, N. and K. S. Joseph Wilson, "Investigation on photonic band gap of a magneto photonic crystal," Optik, Vol. 208, 164092, 2020.
doi:10.1016/j.ijleo.2019.164092

16. Naghizade, S. and H. Saghaei, "A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber," Optik, Vol. 222, 165419, 2020.
doi:10.1016/j.ijleo.2020.165419

17. Ankita, B. S. and A. Bhargava, "Biosensor application of one-dimensional photonic crystal for malaria diagnosis," Plasmonics, Vol. 16, No. 01, 59-63, 2021.
doi:10.1007/s11468-020-01259-8

18. Aly, A. H., Z. A. Zaky, A. S. Shalaby, A. M. Ahmed, and D. Vigneswaran, "Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor," Physica Scripta, Vol. 95, No. 03, 035510, 2020.
doi:10.1088/1402-4896/ab53f5

19. Mehaney, A., "Phononic crystal as a neutron detector," Ultrasonics, Vol. 93, 37-42, 2019.
doi:10.1016/j.ultras.2018.10.012

20. Segovia-Chaves, F., "Transmittance spectrum of a defective one-dimensional photonic crystal with a protein solution," Optik, Vol. 231, 166408, 2021.
doi:10.1016/j.ijleo.2021.166408

21. Zaky, Z. A., A. M. Ahmed, A. S. Shalaby, and A. H. Aly, "Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimization," Scientific Reports, Vol. 10, No. 01, 1-9, 2020.
doi:10.1038/s41598-020-66427-6

22. Ramanujam, N. R., S. K. Patel, N. Manohar Reddy, S. A. Taya, D. Vigneswaran, and M. S. Mani Rajan, "One-dimensional ring mirror-defect photonic crystal for detection of mycobacterium tuberculosis bacteria," Optik, Vol. 219, 165097, 2020.
doi:10.1016/j.ijleo.2020.165097

23. Habli, O., Y. Bouazzi, and M. Kanzari, "Gas sensing using one-dimensional photonic crystal nanoresonators," Progress In Electromagnetics Research C, Vol. 92, 251-263, 2019.
doi:10.2528/PIERC19011106

24. Lee, C.-M. and Y. Xu, "A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials," Journal of Sound and Vibration, Vol. 326, No. 1-2, 290-301, 2009.
doi:10.1016/j.jsv.2009.04.037

25. Fan, C., J. Wang, S. Zhu, J. He, P. Ding, and E. Liang, "Optical properties in one-dimensional graded soft photonic crystals with ferrofluids," Journal of Optics,, Vol. 15, No. 5, 055103, 2013.
doi:10.1088/2040-8978/15/5/055103

26. Yeh, P., Optical Waves in Layered Media, Vol. 95, Wiley, New York, 1988.

27. Liang, X. J., A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, "Determining refractive index of single living cell using an integrated microchip," Sensors and Actuators A: Physical, Vol. 133, No. 02, 349-354, 2007.
doi:10.1016/j.sna.2006.06.045

28. Ramanujam, N. R. and K. S. J. Wilson, "Optical properties of silver nanocomposites and photonic band gap --- Pressure dependence," Optics Communications, Vol. 368, 174-179, 2016.
doi:10.1016/j.optcom.2016.02.018

29. Segovia-Chaves, F., H. A. Elsayed, A. Mehaney, and A. M. Ahmed, "Defect mode modulation for a protein solution cavity surrounded by graphene and nanocomposite layers," Optik, Vol. 242, 167161, 2021.
doi:10.1016/j.ijleo.2021.167161

30. Kok, M. H., R. Ma, J. C. W. Lee, W. Y. Tam, C. T. Chan, P. Sheng, and K. W. Cheah, "Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion," Physical Review E, Vol. Physical, No. 4, 047601, 2005.
doi:10.1103/PhysRevE.72.047601

31. Segovia-Chaves, F. and J. C. Trujillo Yague, "Sensitivity optimization of cells immersed in a cavity surrounded by thin graphene layers in one-dimensional photonic crystals," Optik, Vol. 231, 166355, 2021.
doi:10.1016/j.ijleo.2021.166355

32. Bijalwan, A., B. K. Singh, and V. Rastogi, "Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells," Optik, Vol. 226, 165994, 2021.
doi:10.1016/j.ijleo.2020.165994

33. Aly, A. H. and Z. A. Zaky, "Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor," Cryogenics, Vol. 104, 102991, 2019.
doi:10.1016/j.cryogenics.2019.102991

34. Ramanujam, N. R., I. S. Amiri, S. A. Taya, S. Olyaee, R. Udaiyakumar, A. P. Pandian, K. J. Wilson, P. Mahalakshmi, and P. P. Yupapin, "Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal," Microsystem Technologies, Vol. 25, No. 1, 189-196, 2019.
doi:10.1007/s00542-018-3947-6

35. Panda, A. and P. Puspa Devi, "Photonic crystal biosensor for refractive index based cancerous cell detection," Optical Fiber Technology, Vol. 54, 102123, 2020.
doi:10.1016/j.yofte.2019.102123

36. Jindal, S., S. Sobti, M. Kumar, S. Sharma, and M. K. Pal, "Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection," IEEE Sensors J., Vol. 16, 3705-3710, 2016.
doi:10.1109/JSEN.2016.2536105