Vol. 117
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-06
Design of a Coplanar UWB-MIMO Ground Antenna Based on the Theory of Characteristic Modes
By
Progress In Electromagnetics Research C, Vol. 117, 221-237, 2021
Abstract
A novel two-element UWB-MIMO ground antenna is designed by using the theory of characteristic modes. The proposed antenna has a simple and compact coplanar structure, which consists of a rectangular metal ground, a four-stage stepped patch, a double L-shaped patch with a corner cut and a rectangular substrate. By analyzing the most relevant characteristic modes of the metal ground in UWB, the expected characteristic modes are excited by the capacitive coupling elements and the hybrid loading of the capacitive and inductive coupling elements, so as to reduce the size, broaden the bandwidth and improve the isolation. The simulated and measured results show that the proposed antenna obtains ultra-wide impedance bandwidths (2.7-12.6 GHz for Port 1 and 3.0-11.0 GHz for Port 2). Furthermore, the proposed antenna also achieves high gains (3.1-7.3 dBi for Port 1 and 2.7-5.8 dBi for Port 2), stable radiation patterns and good diversity characteristics (the minimum isolation > 16 dB, the envelope correlation coefficient < 0.01, the channel capacity loss < 0.08 bps/Hz, and the total active reflection coefficient < -4.1 dB, etc.) in the whole impedance bandwidth. The research results can provide a useful reference for the design of UWB-MIMO ground antennas based on the theory of characteristic modes.
Citation
Zhi-Jun Tang, Jie Zhan, Bin Zhong, Long Cheng, and Guocai Zuo, "Design of a Coplanar UWB-MIMO Ground Antenna Based on the Theory of Characteristic Modes," Progress In Electromagnetics Research C, Vol. 117, 221-237, 2021.
doi:10.2528/PIERC21111203
References

1. Li, M. J. and N. Behdad, "A compact, capacitively fed UWB antenna with monopole-like radiation characteristics," IEEE Trans. Antennas Propag., Vol. 65, 1026-1035, 2017.
doi:10.1109/TAP.2016.2641925        Google Scholar

2. Liu, J. L., J. P. Geng, and K. Wang, "A low-profile, directional, ultrawideband antenna," IEEE Antennas Wireless Propag. Lett., Vol. 18, 255-259, 2019.
doi:10.1109/LAWP.2018.2888579        Google Scholar

3. Tang, Z., X. F. Wu, and J. Zhan, "A novel miniaturized antenna with multiple band notched characteristics for UWB communication applications," Journal of Electromagnetic Waves and Applications, Vol. 32, 1961-1972, 2018.
doi:10.1080/09205071.2018.1486235        Google Scholar

4. Nie, L. Y., X. Q. Lin, and Z. Q. Yang, "Structure-shared planar UWB MIMO antenna with high isolation for mobile plat-form," IEEE Trans. Antennas Propag., Vol. 67, 2735-2738, 2019.
doi:10.1109/TAP.2018.2889596        Google Scholar

5. Tang, Z. J., J. Zhan, and X. F. Wu, "Simple ultra-wider bandwidth MIMO antenna integrated by double decoupling branches and square-ring ground structure," Microw. Opt. Technol. Lett., Vol. 62, 1259-1266, 2020.
doi:10.1002/mop.32122        Google Scholar

6. Zhao, X. W., R. Sharjeel, and S. Y. Geng, "A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications," IEEE Access, Vol. 7, 46739-46747, 2019.
doi:10.1109/ACCESS.2019.2909810        Google Scholar

7. Liu, Y. Y. and Z. H. Tu, "Compact differential band-notched stepped-slot UWB-MIMO antenna with common-mode suppression," IEEE Antennas Wireless Propag. Lett., Vol. 16, 593-595, 2017.
doi:10.1109/LAWP.2016.2592179        Google Scholar

8. Yu, C. Y., S. H. Yang, and Y. C. Chen, "A super-wideband and high isolation MIMO antenna system using a wind-mill-shaped decoupling structure," IEEE Access, Vol. 8, 115767-115777, 2020.
doi:10.1109/ACCESS.2020.3004396        Google Scholar

9. Li, Y. S., W. X. Li, and Q. B. Ye, "A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications," International Journal of Antennas and Propag., Vol. 7, 1-13, 2013.        Google Scholar

10. Mao, C. X. and Q. X. Chu, "Compact coradiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, 4474-4480, 2014.
doi:10.1109/TAP.2014.2333066        Google Scholar

11. Li, J. F., Q. X. Chu, and Z. H. Li, "Compact dual band-notched UWB MIMO antenna with high isolation," IEEE Trans. Antennas Propag., Vol. 61, 4759-4766, 2013.
doi:10.1109/TAP.2013.2267653        Google Scholar

12. Zhang, J., L. Wang, and W. Zhang, "A novel dual band-notched CPW-fed UWB MIMO antenna with mutual coupling reduction characteristics," Progress In Electromagnetics Research Letters, Vol. 90, 21-28, 2020.
doi:10.2528/PIERL19122703        Google Scholar

13. Tang, X., Z. Yao, and Y. Li, "A high performance UWB MIMO antenna with defected ground structure and U-shape branches," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, 22270-22283, 2020.        Google Scholar

14. Tang, Z. J., J. Zhan, and X. F. Wu, "Design of a compact UWB MIMO antenna with high isolation and dual band notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 34, 500-513, 2020.
doi:10.1080/09205071.2020.1724200        Google Scholar

15. Lin, G. S., C. H. Sung, and J. L. Chen, "Isolation improvement in UWB MIMO antenna system using carbon black film," IEEE Antennas Wireless Propag. Lett., Vol. 16, 222-225, 2016.
doi:10.1109/LAWP.2016.2570301        Google Scholar

16. Mathur, R. and S. Dwari, "Compact CPW-Fed ultra wideband MIMO antenna using hexagonal ring monopole antenna elements," AEU-Int. J. Electron. Commun., Vol. 93, 1-6, 2018.
doi:10.1016/j.aeue.2018.05.032        Google Scholar

17. Wang, Y. H., Y. J. Yang, and Q. X. Chi, "Design of a compact ultra-wideband MIMO antenna," The Journal of Engineering, Vol. 20, 6487-6489, 2019.        Google Scholar

18. Gunjan, S. and M. Akhilesh, "Compact MIMO slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1057-1060, 2015.        Google Scholar

19. Luo, C. M., J. S. Hong, and L. L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1766-1769, 2015.
doi:10.1109/LAWP.2015.2423318        Google Scholar

20. Rohit, G., K. U. Dharmendra, and K. Binodk, "A novel compact self-similar fractal UWB MIMO antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, 21632-21641, 2019.
doi:10.1002/mmce.21632        Google Scholar

21. Muhammad, S. K., A. D. Capobianco, and I. Adnan, "Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines," IET Microwaves, Antennas & Propag., Vol. 11, 997-1002, 2017.
doi:10.1049/iet-map.2016.1074        Google Scholar

22. Wang, L. L., Z. H. Du, and H. L. Yang, "Compact UWB MIMO antenna with high isolation using fence-type decoupling structure," IEEE Antennas Wireless Propag. Lett., Vol. 18, 1641-1645, 2019.
doi:10.1109/LAWP.2019.2925857        Google Scholar

23. Rakesh, N. T., S. Prabhakar, and K. K. Binod, "Neutralization technique based two and four port high isolation MIMO antennas for UWB communication," AEU-Int. J. Electron. Commun., Vol. 110, 152828-152850, 2019.
doi:10.1016/j.aeue.2019.152828        Google Scholar

24. Vutukuyi, S., O. P. Pokkunuri, and T. P. M. Boddapati, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
doi:10.1109/ACCESS.2020.3015020        Google Scholar

25. Syedakbar, S., S. Ramesh, and J. Deepa, "Ultra wideband monopole planar MIMO antenna for portable devices," IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 1-4, Karur, India, 2017.        Google Scholar

26. Hasan, M. N., S. Chu, and S. Bashir, "A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications," Microw. Opt. Technol. Lett., Vol. 61, 2141-2149, 2019.
doi:10.1002/mop.31877        Google Scholar

27. Li, Q., A. P. Feresidis, and M. Mavidou, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Trans. Antennas Propag., Vol. 63, 1168-1171, 2015.
doi:10.1109/TAP.2014.2387871        Google Scholar

28. Roshna, T. K., K. U. Deepa, and P. Mohanaan, "Compact UWB MIMO antenna for tridirectional pattern diversity characteristics," IET Microwaves, Antennas & Propag., Vol. 11, 2059-2065, 2017.
doi:10.1049/iet-map.2016.0921        Google Scholar

29. Guo, J. Y., F. Liu, and L. Y. Zhao, "Meta-surface antenna array decoupling designs for two linearpolarized antennas coupled in H-plane and E-plane," IEEE Access, Vol. 7, 100442-100452, 2019.
doi:10.1109/ACCESS.2019.2930687        Google Scholar

30. Luo, S. Y., Y. S. Li, and Y. F. Xia, "A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure," Applied Computational Electromagnetics Society Journal, Vol. 34, 411-418, 2019.        Google Scholar

31. Li, H., B. K. Lau, and Z. Ying, "Decoupling of multiple antennas in terminals with chassis excitation using polarization diversity, angle diversity and current control," IEEE Trans. Antennas Propag., Vol. 60, 5947-5957, 2012.
doi:10.1109/TAP.2012.2213056        Google Scholar

32. Ghalib, A. and M. S. Sharawi, "TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals," IEEE Access, Vol. 5, 19680-19692, 2017.
doi:10.1109/ACCESS.2017.2739419        Google Scholar

33. Manteuffe, D. and R. Martens, "Compact multimode multielement antenna for indoor UWB massive MIMO," IEEE Trans. Antennas Propag., Vol. 64, 2689-2697, 2016.
doi:10.1109/TAP.2016.2537388        Google Scholar

34. Erik, F. A., P. M. Angel, and G. V. Ricardo, "Characteristic mode analysis applied to reduce the mutual coupling of a four-element patch MIMO antenna using a defected ground structure," IET Microwaves, Antennas & Propag., Vol. 14, 215-226, 2020.        Google Scholar

35. Zhao, X., S. P. Yeo, and L. C. Ong, "Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes," IEEE Trans. Antennas Propag., Vol. 66, 420-425, 2018.
doi:10.1109/TAP.2017.2768083        Google Scholar

36. Tang, Z.-J., L. Liang, B. Zhong, L. Cheng, C. Tan, and S. Hu, "Uniplanar UWB-MIMO antenna with high isolation based on the radiator-ground shared structure," Progress In Electromagnetics Research Letters, Vol. 93, 35-42, 2020.
doi:10.2528/PIERL20062801        Google Scholar

37. Li, K. and Y. Shi, "A pattern reconfigurable MIMO antenna design using characteristic modes," EEE Access, Vol. 6, 43526-43534, 2018.        Google Scholar

38. Liang, Z. P., J. Ouyang, and F. Yang, "Design and characteristic mode analysis of a low-profile wideband patch antenna using metasurface," Journal of Electromagnetic Waves and Applications, Vol. 32, 2304-2313, 2018.
doi:10.1080/09205071.2018.1507843        Google Scholar

39. Martens, R., E. Safin, and D. Manteuffel, "Inductive and capacitive excitation of the characteristic modes of small terminals," IEEE Loughborough Antennas & Propagation Conference, 1-4, Loughborough, UK, 2011.        Google Scholar

40. Li, K. and Y. Shi, "A pattern reconfigurable MIMO antenna design using characteristic modes," IEEE Access, Vol. 6, 43526-43534, 2018.
doi:10.1109/ACCESS.2018.2863250        Google Scholar

41. Martens, R. and D. Manteuffel, "Systematic design method of a mobile multiple antenna system using the theory of characteristic modes," IET Microwaves, Antennas & Propag., Vol. 8, 887-893, 2014.
doi:10.1049/iet-map.2013.0534        Google Scholar

42. Wang, C. H., Y. K. Chen, and S. W. Yang, "Application of characteristic mode theory in HF band aircraft-integrated multi-antenna system designs," IEEE Trans. Antennas Propag., Vol. 67, 513-521, 2019.
doi:10.1109/TAP.2018.2874800        Google Scholar

43. Kim, D. W. and S. Nam, "Systematic design of a multiport MIMO antenna with bilateral symmetry based on characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, 1076-1085, 2018.
doi:10.1109/TAP.2017.2787607        Google Scholar

44. Shih, T. Y. and N. Behdad, "Bandwidth enhancement of platform-mounted HF antennas using the characteristic mode theory," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1-12, Vancouver, BC, Canada, 2015.        Google Scholar

45. Kishor, K. K. and S. V. Hum, "Multi-port multi-band chassis-mode antenna design using characteristic modes," IEEE Antennas Wireless Propag. Lett., Vol. 16, 609-612, 2016.
doi:10.1109/LAWP.2016.2594093        Google Scholar

46. Tang, Z., X. F. Wu, and J. Zhan, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," IEEE Access, Vol. 7, 19856-19865, 2019.
doi:10.1109/ACCESS.2019.2897170        Google Scholar

47. Khan, M. S., A. D. Capobianco, and S. M. Asif, "A compact CSRR enabled UWB diversity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 808-812, 2016.
doi:10.1109/LAWP.2016.2604843        Google Scholar

48. Ali, W. and A. Ibrahim, "A compact double-sided MIMO antenna with an improved isolation for UWB applications," AEU-Int. J. Electron. Commun., Vol. 82, 7-13, 2017.
doi:10.1016/j.aeue.2017.07.031        Google Scholar

49. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and A. Kumar, "A compact modified sierpinski carpet fractal UWB MIMO antenna with square-shaped funnel-like ground stub," AEU-Int. J. Electron. Commun., Vol. 117, 1-10, 2020.
doi:10.1016/j.aeue.2020.153126        Google Scholar

50. Thakur, E., N. Jaglan, S. D. Gupta, and B. Kanaujia, "A compact notched UWB MIMO antenna with enhanced performance," Progress In Electromagnetics Research C, Vol. 91, 39-53, 2019.
doi:10.2528/PIERC18120202        Google Scholar

51. Khan, S. M., A. Iftikhar, S. M. Asif, A. D. Capobianco, and B. D. Braaten, "A compact four elements UWB MIMO antenna with on-demand WLAN rejection," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 270-276, 2016.
doi:10.1002/mop.29546        Google Scholar

52. Wani, Z. and D. Kumar, "A compact 4 × 4 MIMO antenna for UWB applications," Microw. Opt. Technol. Lett., Vol. 58, 1433-1436, 2016.
doi:10.1002/mop.29840        Google Scholar

53. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and S. Kumar, "An ultra-compact two-port UWB-MIMO antenna with dual band-notched characteristics," AEU-Int. J. Electron. Commun., Vol. 114, 1-12, 2020.        Google Scholar