1. Lucia, O., P. Maussion, E. J. Dede, and J. M. Burdio, "Induction heating technology and its applications: Past developments, current technology, and future challenges," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2509-2520, May 2014.
doi:10.1109/TIE.2013.2281162 Google Scholar
2. Mach, F., V. Starman, P. Karban, I. Dolezel, and P. Kus, "Finite element 2D model of induction heating of rotating billets in system of permanent magnets and its experimental verification," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2584-2591, May 2014.
doi:10.1109/TIE.2013.2276025 Google Scholar
3. Mach, F., P. Karban, and I. Dolezel, "Induction heating of cylindrical nonmagnetic ingots by rotation in static magnetic field generated by permanent magnets," Journal of Computational and Applied Mathematics, Vol. 236, No. 18, 4732-4744, ELSVIER, Dec. 2012.
doi:10.1016/j.cam.2012.02.035 Google Scholar
4. Han, W., et al., "Commercial design and operating characteristics of a 300kW Superconducting Induction Heater (SIH) based on HTS magnets," IEEE Trans. Appl. Supercond., Vol. 29, No. 5, 1-5, Aug. 2019. Google Scholar
5. Choi, J., et al., "Design and performance evaluation of a multi-purpose HTS DC induction heating machine for industrial applications," IEEE Trans. Appl. Supercond., Vol. 25, No. 3, 1-5, Jun. 2015. Google Scholar
6. Lubin, T., D. Netter, J. Leveque, and A. Rezzoug, "Induction heating of aluminium billet subjected to a strong rotating magnetic field produced by superconducting windings," IEEE Trans. Magn., Vol. 45, No. 5, 2118-2127, May 2009.
doi:10.1109/TMAG.2009.2014461 Google Scholar
7. Choi, J., C.-K. Lee, S. Cho, M. Park, I.-K. Yu, and M. Iwakuma, "Recent development and research activities of induction heater with high-TC superconducting magnets for commercialization," SN Appl. Sciences, Vol. 1, No. 1, 59-64, 2018.
doi:10.1007/s42452-018-0073-0 Google Scholar
8. Abdi, A., Y. Ouazir, G. Barakat, and Y. Amara, "Permanent magnet linear induction heating device: Newtopology enhancing performances," COMPEL, Vol. 37, No. 5, 1755-1767(13), Oct. 2018.
doi:10.1108/COMPEL-01-2018-0026 Google Scholar
9. Ammar, A., "2D hybrid magnetic model calculation in axisymmetric device," Progress In Electromagnetics Research Letters, Vol. 103, 15-23, 2022.
doi:10.2528/PIERL22010201 Google Scholar
10. Fabbri, M., A. M. Forzan, S. Lupi, A. Morandi, and P. L. Ribani, "Experimental and numerical analysis of DC induction heating of aluminium billets," IEEE Trans. Magn., Vol. 45, No. 1, 192-200, Jan. 2009.
doi:10.1109/TMAG.2008.2005794 Google Scholar
11. Runde, M., N. Magnusson, C. Fulbier, and C. Buhrer, "Commercial induction heaters with high temperature superconductor coils," IEEE Trans. Appl. Supercond., Vol. 21, No. 3, 1379-1383, 2011.
doi:10.1109/TASC.2010.2088095 Google Scholar
12. Mach, F., P. Karban, I. Dolezel, P. Sima, Z. Jeliek, and , "Model of induction heating of rotating non-magnetic billets and its experimental verification," IEEE Trans. Magn., Vol. 50, No. 2, 309-312, Feb. 26, 2014.
doi:10.1109/TMAG.2013.2286497 Google Scholar
13. Bensaidane, H., T. Lubin, S. Mezani, Y. Ouazir, and A. Rezzoug, "A new topology for induction heating system with PM excitation: Electromagnetic model and experimental validations," IEEE Trans. Magn., Vol. 51, No. 10, 3479-3487, Jun. 2015.
doi:10.1109/TMAG.2015.2442515 Google Scholar
14. Qin, Z., H. Talleb, and Z. Ren, "A proper generalized decomposition-based solver for nonlinear magnetothermal problems," IEEE Trans. Magn., Vol. 52, No. 1, 1-11, Oct. 2016. Google Scholar
15. Moro, F. and L. Codecasa, "A 3-D hybrid cell method for induction heating problems," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, Jun. 2017.
doi:10.1109/TMAG.2017.2659801 Google Scholar
16. Ouazir, Y., A. Abdi, and H. Bensaidane, "2D analytical solution of transverse ux induction heating of the aluminum plates," 2012 XXth International Conference on Electrical Machines, 2733-2738, Marseille, France, Sep. 2012. Google Scholar
17. Fabbri, M., A. M. Forzan, S. Lupi, A. Morandi, and P. L. Ribani, "Experimental and numerical analysis of DC induction heating of aluminium billets," IEEE Trans. Magn., Vol. 45, No. 1, 192-200, Jan. 2009.
doi:10.1109/TMAG.2008.2005794 Google Scholar
18. Aliferov, A., F. Dughiero, and M. Forzan, "Coupled magnetothermal FEM model of direct heating of ferromagnetic bended Tubes," IEEE Trans. Magn., Vol. 46, No. 8, 3217-3220, Jul. 19, 2010.
doi:10.1109/TMAG.2010.2046479 Google Scholar
19. D'Angelo, L. A. M. and H. De Gersem, "Quasi-3D finite-element method for simulating cylindrical induction-heating devices," IEEE Trans. Magn., Vol. 2, 134-141, Aug. 2017. Google Scholar
20. Qin, Z., H. Talleb, and Z. Ren, "A proper generalized decomposition-based solver for nonlinear magnetothermal problems," IEEE Trans. Magn., Vol. 52, No. . 2, 1-9, Feb. 2016.
doi:10.1109/TMAG.2015.2492462 Google Scholar
21. Ennassiri, H., G. Barakat, and Y. Amara, "Steady state hybrid thermal modelling of permanent magnet electrical machines," Proc. Int. Conf. Ecol. Vehicles Renew. Energies (EVER), 1-6, 2016. Google Scholar
22. Zhu, S., M. Cheng, and X. Cai, "Direct coupling method for coupled field-circuit thermal model of electrical machines," IEEE Trans. Magn., Vol. 33, No. 2, 473-482, Jun. 2018. Google Scholar
23. Nategh, S., O. Wallmark, M. Leksell, and S. Zhao, "Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling," IEEE Trans. Energy Convers., Vol. 27, No. 2, 477-488, Jun. 2012.
doi:10.1109/TEC.2012.2188295 Google Scholar
24. Boughrara, K., F. Dubas, and R. Ibtiouen, "2-D exact analytical method for steady-state heat transfer prediction in rotating electrical machines," IEEE Trans. Magn., Vol. 54, No. 9, 1-19, Sept. 2018.
doi:10.1109/TMAG.2018.2851212 Google Scholar
25. Abdi, A., Y. Ouazir, G. Barakat, and Y. Amara, "Transient quasi-3D magneto-thermal analytical solution in PM induction heating device," COMPEL | The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 39, No. 5, 1131-1144, 2020.
doi:10.1049/pi-a.1958.0036 Google Scholar
26. Russell, R. L. and K. H. Norsworthy, "Eddy currents and wall losses inscreened-rotor induction motors," Proceedings of the IEE Part A: Power Engineering, Vol. 105, No. 20, 163, 1958.
doi:10.1109/20.376458 Google Scholar
27. Decreux, P. and G. Nicolas, "Finite length effects study in massive iron rotors using 3D electromagnetic field computation," IEEE Trans. Magn., Vol. 31, No. 3, 2096-2099, May 1995.
doi:10.1109/TMAG.2011.2167347 Google Scholar
28. De La Barriere, O., S. Hlioui, H. Ben Ahmed, et al. "3-D formal resolution of Maxwell equations for the computation of the no load flux in an axial flux permanent magnet synchronous machine," IEEE Trans. Magn., Vol. 48, No. 1, 128-136, 2012.
doi:10.1109/TIE.2013.2279364 Google Scholar
29. Pluk, K. J. W., T. A. van Beek, J. W. Jansen, and E. A. Lomonova, "Modeling and measurements on a finite rectangular conducting plate in an eddy current damper," IEEE Trans. Industrial Electronics, Vol. 61, No. 8, 4061-4072, Aug. 2014. Google Scholar
30. Paul, S., J. Wright, and J. Z. Bird, "3-D steady-state eddy current dampingand stiffness for a finite thickness conductive plate," IEEE Trans. Magn., Vol. 50, No. 11-6301404, Nov. 2014.
doi:10.1109/TMAG.2019.2950389 Google Scholar
31. Jin, P., Y. Tian, Y. Lu, Y. Guo, G. Lei, and J. Zhu, "3-D analytical magnetic field analysis of the eddy current coupling with halbach magnets," IEEE Trans. Magn., Vol. 56, No. 1, 1-4, Jan. 2020.
doi:10.1109/TMAG.2015.2455955 Google Scholar
32. Lubin, T. and A. Rezzoug, "3-D analytical model for axial- ux eddy-current couplings and brakes under steady-state conditions," IEEE Trans. Magn., Vol. 51, No. 10, 1-12, Oct. 2015. Google Scholar
33. Diriye, A., Y. Amara, and G. Barakat, "Three-dimensional modeling of permanents magnets synchronous machines using a 3D reluctance network," 2018 XIII International Conference on Electrical Machines (ICEM), 2304-2310, Alexandroupoli, Greece, Sep. 2018. Google Scholar
34. Jin, P., Y. Yuan, J. Minyi, F. Shuhua, L. Heyun, H. Yang, and S. L. Ho, "3-D analytical magnetic field analysis of axial flux permanent magnet machine," IEEE Trans. Magn., Vol. 50, No. 11, 8103504, Nov. 2014.
doi:10.1109/TMAG.2019.2953110 Google Scholar
35. Sahu, R., P. Pellerey, and K. Laskaris, "Eddy current loss model unifying the effects of reaction field and non-homogeneous 3-D magnetic field," IEEE Trans. Magn., Vol. 56, No. 2, 1-4, Jan. 13, 2020.
doi:10.2528/PIERB16051908 Google Scholar
36. Sun, X., S. Luo, L. Chen, R. Zhao, and Z. Yang, "Suspension force modeling and electromagnetic characteristics analysis of an interior bearingless permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 69, 31-45, 2016.
doi:10.2528/PIERB14100902 Google Scholar
37. Verez, G., G. Barakat, and Y. Amara, "Influence of slots and rotor poles combinations on noise and vibrations of magnetic origins in `U'-core flux-switching permanent magnet machines," Progress In Electromagnetics Research B, Vol. 61, 149-168, 2014. Google Scholar