1. Yuan, J., H. Q. Ngo, and M. Matthaiou, "Towards large intelligent surface (LIS)-based communications," IEEE Transactions on Communications, Vol. 68, No. 10, 6568-6582, 2020. Google Scholar
2. Najafi, M., V. Jamali, R. Schober, and H. V. Poor, "Physics-based modeling and scalable optimization of large intelligent reflecting surfaces," IEEE Transactions on Communications, Vol. 69, No. 4, 2673-2691, 2021. Google Scholar
3. Dardari, D., "Communicating with large intelligent surfaces: Fundamental limits and models," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2526-2537, 2020. Google Scholar
4. Han, Y., W. Tang, S. Jin, C.-K. Wen, and X. Ma, "Large intelligent surface-assisted wireless communication exploiting statistical CSI," IEEE Transactions on Vehicular Technology, Vol. 68, No. 8, 8238-8242, 2019. Google Scholar
5. Kundu, N. K. and M. R. Mckay, "Large intelligent surfaces with channel estimation overhead: Achievable rate and optimal configuration," IEEE Wireless Communications Letters, Vol. 10, No. 5, 986-990, 2021. Google Scholar
6. Taha, A., M. Alrabeiah, and A. Alkhateeb, "Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems," 2019 IEEE Global Communications Conference (GLOBECOM), 1-6, 2019. Google Scholar
7. Di Renzo, M., F. Habibi Danufane, X. Xi, J. de Rosny, and S. Tretyakov, "Analytical modeling of the path-loss for reconfigurable intelligent surfaces - Anomalous mirror or scatterer?," 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, 2020. Google Scholar
8. Tang, W., M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, "Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement," IEEE Transactions on Wireless Communications, Vol. 20, No. 1, 421-439, 2021. Google Scholar
9. Yildirim, I., A. Uyrus, and E. Basar, "Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks," IEEE Transactions on Communications, Vol. 69, No. 2, 1290-1301, 2021. Google Scholar
10. Wen, J., Y. Zhang, G. Yang, Z. He, and W. Zhang, "Path loss prediction based on machine learning methods for aircraft cabin environments," IEEE Access, Vol. 7, 159251-159261, 2019. Google Scholar
11. Zhang, Y., J. Wen, G. Yang, Z. He, and J. Wang, "Path loss prediction based on machine learning: Principle, method, and data expansion," Applied Sciences, Vol. 9, No. 9, 2019, [Online]. Available: https://www.mdpi.com/2076-3417/9/9/1908. Google Scholar
12. Duangsuwan, S., P. Juengkittikul, and M. Myint Maw, "Path loss characterization using machine learning models for GS-to-UAV-enabled communication in smart farming scenarios," International Journal of Antennas and Propagation, Vol. 2021, 5524709, Aug. 2021, [Online]. Available: https://doi.org/10.1155/2021/5524709. Google Scholar
13. Aldossari, S. and K.-C. Chen, "Predicting the path loss of wireless channel models using machine learning techniques in mmWave urban communications," 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), 1-6, 2019. Google Scholar
14. Juang, R.-T., "Explainable deep-learning-based path loss prediction from path profiles in urban environments," Applied Sciences, Vol. 11, No. 15, 2021, [Online]. Available: https://www.mdpi.com/2076-3417/11/15/6690. Google Scholar
15. Zhang, Y., J. Wen, G. Yang, Z. He, and X. Luo, "Air-toair path loss prediction based on machine learning methods in urban environments," Wireless Communications and Mobile Computing, Vol. 2018, 8489326, Jun. 2018, [Online]. Available: https://doi.org/10.1155/2018/8489326. Google Scholar
16. Ellingson, S. W., "Path loss in reconfigurable intelligent surface-enabled channels," 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 829-835, IEEE, 2021. Google Scholar
17. Molisch, A. F., K. Balakrishnan, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, Johan, Karedal, J. Kunisch, H. G. Schantz, U. G. Schuster, and K. Siwiak, "IEEE 802.15.4a channel model-final report,", 2004. Google Scholar
18. Hu, S., F. Rusek, and O. Edfors, "Beyond massive MIMO: The potential of data transmission with large intelligent surfaces," IEEE Transactions on Signal Processing, Vol. 66, No. 10, 2746-2758, 2018. Google Scholar
19. Jide, Y., H.-Q. Ngo, and M. Matthaiou, "Large intelligent surface (LIS)-based communications: New features and system layouts," IEEE International Conference on Communications, IEEE, arXiv:2002.12183, Feb. 2020. Google Scholar
20. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.
21. Greenquist, R. E. and A. J. Orlando, "An analysis of passive reflector antenna systems," Proceedings of the IRE, Vol. 42, No. 7, 1173-1178, 1954. Google Scholar
22. Silver, S., Microwave Antenna Theory and Design, S. Silver, et al., Ed., [Massachusetts Institute of Technology. Radiation Laboratory Series. No. 12], 1949, [Online]. Available: https://books.google.com.eg/books?id=Fi42MwEACAAJ.
23. MATLAB "Version 7.10.0 (R2010a),", Natick, The MathWorks Inc., Massachusetts, 2010. Google Scholar
24. Ozdogan, O., E. Bjornson, and E. G. Larsson, "Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling," IEEE Wireless Communications Letters, Vol. 9, No. 5, 581-585, 2020. Google Scholar
25. Muller, A. and S. Guido, "Introduction to machine learning with python: A guide for data scientists,", O'Reilly Media, 2016, [Online]. Available: https://books.google.com.eg/books?id=vbQlDQAAQBAJ. Google Scholar
26. Huang, J., N. Huang, L. Zhang, and H. Xu, "A method for feature selection based on the correlation analysis," Proceedings of 2012 International Conference on Measurement, Information and Control, Vol. 1, 529-532, 2012. Google Scholar
27. Mohammed, R., J. Rawashdeh, and M. Abdullah, "Machine learning with oversampling and undersampling techniques: Overview study and experimental results," 2020 11th International Conference on Information and Communication Systems (ICICS), 243-248, 2020. Google Scholar
28. Ray, S., "A quick review of machine learning algorithms," 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35-39, 2019. Google Scholar
29. Popoola, S. I., A. Jefia, A. A. Atayero, O. Kingsley, N. Faruk, O. F. Oseni, and R. O. Abolade, "Determination of neural network parameters for path loss prediction in very high frequency wireless channel," IEEE Access, Vol. 7, 150 462-150 483, 2019. Google Scholar
30. Breiman, L., "Random forests," Machine Learning, Vol. 45, No. 1, 5-32, Oct. 2001, [Online]. Available: https://doi.org/10.1023/A:1010933404324. Google Scholar
31. Breiman, L., "Bagging predictors," Machine Learning, Vol. 24, No. 2, 123-140, Aug. 1996, [Online]. Available: https://doi.org/10.1007/BF00058655. Google Scholar
32. Rahim, A., Y. Rasheed, F. Azam, M. W. Anwar, M. A. Rahim, and A. W. Muzaffar, "An integrated machine learning framework for effective prediction of cardiovascular diseases," IEEE Access, Vol. 9, 106 575-106 588, 2021. Google Scholar
33. Buitinck, L., G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, "API design for machine learning software: Experiences from the scikit-learn project," ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108-122, 2013. Google Scholar
34. Lin, W., Z. Wu, L. Lin, A. Wen, and J. Li, "An ensemble random forest algorithm for insurance big data analysis," IEEE Access, Vol. 5, 16 568-16 575, 2017. Google Scholar
35. Matsushita, Y. and T. Wada, "Principal component hashing: An accelerated approximate nearest neighbor search," Proceedings of the 3rd Pacific Rim Symposium on Advances in Image and Video Technology, Springer-Verlag, Heidelberg, Berlin, 2009, [Online]. Available: https://doi.org/10.1007/978-3-540-92957-4_33. Google Scholar
36. Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, "In-datacenter performance analysis of a tensor processing unit," 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 1-12, 2017. Google Scholar
37. "Anaconda software distribution,", 2020, [Online]. Available: https://docs.anaconda.com/. Google Scholar