Vol. 105
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-27
A Wideband Compact Antenna for Vehicles Communication in Its Applications
By
Progress In Electromagnetics Research Letters, Vol. 105, 85-93, 2022
Abstract
A wideband compact shark-fin antenna operating in a frequency band from 2.86 GHz to 7.68 GHz is presented. The proposed design is realized on a substrate material of ``Rogers 4003C'' with εr = 3.48, tanδ = 0.0027, and substrate thickness 0.81 mm. The antenna is designed to operate at a center frequency of 5 GHz with an operating bandwidth of 4.82 GHz (96.4%). The bandwidth covers the lower band and mid band of 5G at resonant frequencies of 3.5 GHz and 5.8 GHz, respectively. The realized gain of the proposed antenna is 4.1 dBi and 5.35 dBi in the lower band and mid band, respectively. The proposed antenna is designed and simulated. It is also fabricated using photolithography techniques and measured using an R&S vector network analyzer. Good agreement is obtained between the simulated and measured results.
Citation
Allam M. Ameen, Mohamed Ismail Ahmed, Hala Elsadek, and Wagdy R. Anis, "A Wideband Compact Antenna for Vehicles Communication in Its Applications," Progress In Electromagnetics Research Letters, Vol. 105, 85-93, 2022.
doi:10.2528/PIERL22021905
References

1. Wang, H. and G. Yang, "Design of 4 × 4 microstrip Quasi-Yagi beam-steering antenna array operation at 3.5 GHz for future 5G vehicle applications," International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 331-334, Mar. 2017, doi: 10.1109/iwat.2017.7915393.
doi:10.1109/IWAT.2017.7915393

2. Arya, A. K., S. J. Kim, and S. Kim, "A dual-band antenna for LTE-R and 5G lower frequency operations," Progress In Electromagnetics Research Letters, Vol. 88, 113-119, 2020.
doi:10.2528/PIERL19081502

3. Khalifa, M. O., A. M. Yacoub, and D. N. Aloi, "A multiwideband compact antenna design for vehicular sub-6 GHz 5G wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8136-8142, Aug. 2021, doi: 10.1109/TAP.2021.3083770.
doi:10.1109/TAP.2021.3083770

4. Arya, A. K., S. J. Kim, S. Park, D.-H. Kim, R. S. Hassan, K. Ko, and S. Kim, "Shark-fin antenna for railway communications in LTE-R, LTE, and lower 5G frequency bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.
doi:10.2528/PIER20040201

5. Liu, A. and Y. Lu, "Low-profile patch antennas with enhanced horizontal omnidirectional gain for DSRC applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 246-253, 2018, doi: 10.1049/iet-map.2017.0845.
doi:10.1049/iet-map.2017.0845

6. Li, C., W. Chen, J. Yu, et al. "V2V radio channel properties at urban intersection and ramp on urban viaduct at 5.9 GHz," IET Communications, Vol. 12, No. 17, 2198-2205, 2018, doi: 10.1049/iet-com.2018.5247.
doi:10.1049/iet-com.2018.5247

7. Wevers, K. and M. Lu, "V2X communication for ITS-from IEEE 802.11p towards 5G," IEEE 5G Tech Focus, Vol. 1, No. 2, Jun. 2017.

8. Fujita, K., "MNL-FDTD/SPICE method for fast analysis of short-gap ESD in complex systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 709-720, Jun. 2016, doi: 10.1109/temc.2016.2532888.
doi:10.1109/TEMC.2016.2532888

9. Wang, S., K. M. Mak, H. W. Lai, et al. "Printed circularly polarized wire antennas with DC grounded stub," Microwave and Optical Technology Letters, Vol. 54, No. 12, 2719-272, 2012, doi: 10.1002/mop.27181.
doi:10.1002/mop.27181

10. Diez, M. B., P. Plitt, W. Pascher, et al. "Antenna placement and wave propagation for Car-to-Car communication," European Microwave Conference (EuMC), 207-210, Sept. 7-10, 2015, doi: 10.1109/eumc.2015.7345736.

11. Wu, Q., Y. Zhou, and S. Guo, "An L-sleeve L-monopole antenna fitting a shark-fin module for vehicular LTE, WLAN, and car-to-car communications," IEEE Transactions on Vehicular Technology, Vol. 67, No. 8, 7170-7180, Apr. 2018, doi: 10.1109/tvt.2018.2828433.
doi:10.1109/TVT.2018.2828433

12. Cerretelli, M., V. Tesi, and G. B. Gentili, "Design of a shape-constrained dual-band polygonal monopole for car roof mounting," IEEE Transactions on Vehicular Technology, Vol. 57, No. 3, 1398-1403, May 2008, doi: 10.1109/tvt.2007.912153.
doi:10.1109/TVT.2007.912153

13. Bhatia, M., M. Dimri, and B. Chauhan, "Rooftop antenna for vehicular application," Innovations in Electrical and Electronic Engineering, 617-625, Singapore, May 2021, doi: 10.1007/978-981-16-0749-3 48.

14. Melli, F., S. Lenzini, M. Cerretelli, et al. "Low profile wideband 3D antenna for roof-top LTE vehicular applications," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 157-159, Sept. 2019, doi: 10.1109/APWC.2019.8870503.
doi:10.1109/APWC.2019.8870503

15. Ghafari, E., A. Fuchs, D. Eblenkamp, et al. "A vehicular rooftop, shark-fin, multiband antenna for the GPS/LTE/cellular/DSRC systems," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 237-240, Aug. 2014, doi: 10.1109/apwc.2014.6905546.
doi:10.1109/APWC.2014.6905546

16. Rongas, D., A. Paraskevopoulos, L. Marantis, and A. G. Kanatas, "An integrated shark-fin reconfigurable antenna for V2X communications," Progress In Electromagnetics Research C, Vol. 100, 1-16, 2020.
doi:10.2528/PIERC19112005

17. Kim, S., D. Kang, and J. Choi, "Beam reconfigurable antenna using switchable parasitic elements for V2V applications," International Symposium on Antennas and Propagation (ISAP), 1-2, Oct. 2017, doi: 10.1109/ISANP.2017.8229006.

18. Kowalewski, J., J. Mayer, T. mahler, et al. "A compact pattern reconfigurable antenna utilizing multiple monopoles," 2016 International Workshop on Antenna Technology (iWAT), 1-4, Mar. 2016, doi: 10.1109/IWAT.2016.7434783.

19. Kowalewski, J., T. Mahler, J. Mayer, et al. "A miniaturized pattern reconfigurable antenna for automotive applications," 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Apr. 2016, doi: 10.1109/EuCAP.2016.7481207.

20. Jose, M. C., R. Chithra Devi, B. S. Sreeja, et al. "A novel wideband pattern reconfigurable antenna using switchable parasitic stubs," Microwave and Optical Technology Letters, Vol. 61, No. 4, 1090-1096, Apr. 2019, doi: 10.1002/mop.31698.
doi:10.1002/mop.31698

21. Wei, K., Z. Zhang, and Z. Feng, "Design of a coplanar integrated microstrip antenna for GPS/ITS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 458-461, May 2011, doi: 10.1109/LAWP.2011.2152361.

22. Hao, H., J. Li, D. Huang, et al. "Design of hexagon microstrip antenna for vehicle-to-vehicle communication," The Journal of China Universities of Posts and Telecommunications, Vol. 23, No. 4, 69-76, Aug. 2016, doi: 10.1016/S1005-8885(16)60047-X.
doi:10.1016/S1005-8885(16)60047-X

23. Sai, M. Y., S. Kavya, S. R. Bhimavarapu, et al. "CPW fed microstrip patch antenna for dedicated short-range communication," Wireless Personal Communications, 1-15, Sept. 2021, doi: 10.1007/s11277-021-09114-7.

24. Zhang, Y., H. Zheng, B. Gao, C. Tang, R. Liu, and M. Wang, "A compact dual-band antenna for 5G application," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-2, Jul. 2019.

25. Babbar, P., S. Mishra, A. Rajawat, and S. Saxena, "Design of an L-shaped dual band patch antenna for 5G applications," 2021 8th International Conference on Signal Processing and Integrated Networks, 1108-1113, SPIN, Aug. 2021.

26. Roshna, T. K., U. Deepak, V. R. Sajitha, et al. "Coplanar stripline-fed compact UWB antenna," Electronics Letters, Vol. 50, No. 17, 1181-1182, Aug. 2014, doi: 10.1049/el.2014.1884.
doi:10.1049/el.2014.1884