Vol. 119
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-04-19
High-Gain Reflectarray with Compact Aperture Size and a Low Profile Using an Active-Integrated Feeding Antenna
By
Progress In Electromagnetics Research C, Vol. 119, 245-254, 2022
Abstract
In this paper, we present a gain-enhancement technique for reflectarray applications with compact aperture size and a low profile. To increase antenna gain, reflectarrays are constructed as an electrically large aperture, and the feed is required to be of high directivity, which is accompanied by a longer focal length. This increases the dimensions in two aspects, including the physical aperture size and the profile of the overall structure. To obtain high gain with compact dimensions, we develop a reflectarray that uses an active-integrated feeding antenna. This feeding antenna is connected to a microwave power amplifier, which enhances the gain without reducing the half-power beam widths (HPBWs) of the patterns. Accordingly, the feed can be arranged with a shorter focal length, whereas the spillover efficiency is still high. Moreover, the power amplifier contributes additional gain of 20.6 dB, and thus the proposed structure can achieve realized gain as high as 44.5 dB with dimensions of 9.2 × 6.7 square wavelengths. Such a high-gain and compact antenna is particularly suitable for satellite applications.
Citation
Yen-Sheng Chen, and Yu-Hong Wu, "High-Gain Reflectarray with Compact Aperture Size and a Low Profile Using an Active-Integrated Feeding Antenna," Progress In Electromagnetics Research C, Vol. 119, 245-254, 2022.
doi:10.2528/PIERC22031201
References

1. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 287-296, Feb. 1997.
doi:10.1109/8.560348

2. Encinar, J. A. and J. A. Zornoza, "Three-layer printed reflectarrays for contoured beam space applications," IEEE Trans. Antennas Propag., Vol. 52, No. 5, 1138-1148, May 2004.
doi:10.1109/TAP.2004.827506

3. Encinar, J. A., et al. "Dual-polarization dual-coverage reflectarray for space applications," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2828-2837, Oct. 2006.

4. Hum, S. V. and J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 183-198, Jan. 2014.
doi:10.1109/TAP.2013.2287296

5. Narayanasamy, K., G. N. A. Mohammed, K. Savarimuthu, R. Sivasamy, and M. Kanagasabai, "A comprehensive analysis on the state-of-the-art developments in re ectarray, transmitarray, and transmit-re ectarray antennas," Int. J. RF Microw. Comput. Aid. Eng., Vol. 30, No. 9, 1-22, Sep. 2020.
doi:10.1002/mmce.22272

6. Zebrowski, M., "Illumination and spillover efficiency calculations for rectangular reflectarray antennas," High Freq. Des., Vol. 1, 28-38, Dec. 2012.

7. Chahat, N., R. E. Hodges, J. Sauder, M. Thomson, E. Peral, and Y. Rahmat-Samii, "CubeSat deployable Ka-band mesh reflector antenna development for earth science missions," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2083-2093, Jun. 2016.
doi:10.1109/TAP.2016.2546306

8. Vourch, C. J. and T. D. Drysdale, "Bull's eye' antenna for cubesat applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1092-1095, Jun. 2014.
doi:10.1109/LAWP.2014.2327852

9. Babuscia, A., et al. "Inflatable antenna for CubeSat: A new spherical design for increased X-band gain," Proc. IEEE Aerospace Conference, 1-10, Big Sky, MT, USA, Mar. 2017.

10. Moharram, M. A. and A. A. Kishk, "A Ka-band optically transparent reflectarray design integrated with solar cells," Proc. IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, Montreal, Canada, Oct. 2015.

11. Qin, F., et al. "Wideband circularly polarized Fabry-Perot antenna [antenna applications corner]," IEEE Antennas Propag. Mag., Vol. 57, No. 5, 127-135, Oct. 2015.
doi:10.1109/MAP.2015.2470678

12. Padilla, J., G. Rosati, A. Ivanov, F. Bongard, S. Vaccaro, and J. Mosig, "Multi-functional miniaturized slot antenna system for small satellites," Proc. Eur. Conf. Antennas Propag. (EuCAP 2011), 2170-2174, Rome, Italy, May 2011.

13. McNicholas, M., J. Deluna, R. Manno, and Y.-H. Shu, "Low cost Ka-band transmitter for CubeSat systems," Proc. Topical Workshop Internet Space (TWIOS), 1-4, Phoenix, AZ, USA, Jan. 2017.

14. Dahri, M. H., et al. "Aspects of efficiency enhancement in reflectarrays with analytical investigation and accurate measurement," Electronics, Vol. 9, No. 11, 1-26, Nov. 2020.

15. Hang, C. Y., W. R. Deal, Y. Qian, and T. Itoh, "Push-pull power ampli er integrated with microstrip leaky-wave antenna," Electron. Lett., Vol. 35, No. 22, 1891-1893, Oct. 1999.
doi:10.1049/el:19991318

16. Robert, B., T. Razban, and A. Papiernik, "Compact amplifier integration in square patch antenna," Electron. Lett., Vol. 28, No. 19, 1808-1810, Sep. 1992.
doi:10.1049/el:19921153

17. Dhar, S. K., O. Hammi, M. S. Sharawi, and F. M. Ghannouchi, "Power amplifier based integrated and miniaturized active antenna," Proc. 9th European Conference on Antennas and Propagation (EuCAP), 1-4, Lisbon, Portugal, Apr. 2015.

18. Chen, Y.-S., Y.-H. Wu, and C.-C. Chung, "Solar-powered active integrated antennas backed by a transparent reflectarray for CubeSat applications," IEEE Access, Vol. 8, 137934-137946, 2020.
doi:10.1109/ACCESS.2020.3012133

19. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley, New York, NY, USA, 2005.