Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-18
A Filtering Dielectric Resonator Antenna Using CPW-Fed for Sub-6 GHz Applications
By
Progress In Electromagnetics Research Letters, Vol. 105, 49-56, 2022
Abstract
A filtering dielectric resonator antenna (FDRA) using an inductive CPW (coplanar waveguide) feed structure is proposed. Simultaneously, a pair of slotline stubs are respectively loaded on the signal line and ground of the CPW feed structure, which is used to generate radiation nulls near the edges of the passband. Furthermore, the two radiation nulls can be controlled independently by adjusting the length of the loaded two pairs of slotline stubs. In addition, it is interesting that TE111 mode is split due to the different loading effects of slotline stubs in feed network, thereby three resonances in the passband are formed. Finally, an FDRA with quasi-elliptic function response is realized without additional filtering circuit. The prototype of the FDRA operating at 3.53 GHz was fabricated and measured to verify the design validity. The measured results show that the impedance bandwidth is 13.6% (3.29-3.77 GHz); the gain is basically stable at 5.7 dBi wihtin the passband; and the two radiation nulls are located at 3.05 GHz and 3.88 GHz, respectively.
Citation
Chuanyun Wang, Lina Wang, Yonghua Zhang, Weikang Hu, and Xiaofeng Jiang, "A Filtering Dielectric Resonator Antenna Using CPW-Fed for Sub-6 GHz Applications," Progress In Electromagnetics Research Letters, Vol. 105, 49-56, 2022.
doi:10.2528/PIERL22041002
References

1. Wang, H. Y., G. Zhao, and R. Y. Li, "A low-profile half-mode substrate integrated waveguide filtering antenna with high frequency selectivity," Progress In Electromagnetics Research Letters, Vol. 99, 35-43, Jul. 2021.
doi:10.2528/PIERL21051206

2. Shome, P. P., T. Khan, and S. K. Koul, "Filtenna designs for radio-frequency front-end systems: A structural-oriented review," IEEE Antennas and Propagation Magazine, Vol. 63, No. 5, 72-84, Oct. 2021.
doi:10.1109/MAP.2020.2988518

3. Petosa, A., A. Ittipiboon, and Y. M. Mantar, "Recent advances in dielectric-resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998.
doi:10.1109/74.706069

4. Petosa, A. and A. Ittipiboon, "Dielectric resonator antennas: A historical review and the current state of the art," IEEE Antennas and Propagation Magazine, Vol. 52, No. 5, 91-116, Oct. 2010.
doi:10.1109/MAP.2010.5687510

5. Hu, P. F., Y. M. Pan, and X. Y. Zhang, "Broadband filtering dielectric resonator antenna with wide stopband," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2079-2084, Apr. 2017.
doi:10.1109/TAP.2017.2670438

6. Sahoo, A. K., R. D. Gupta, and M. S. Parihar, "Circularly polarised filtering dielectric resonator antenna for X-band applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 9, 1514-1518, 2018.
doi:10.1049/iet-map.2017.1159

7. Ballav, S., G. A. Sarkar, and S. K. Parui, "High-selective filtering dielectric resonator antenna by integrating band-rejection resonators in Feedline," Sādhanā, Vol. 46, No. 2, 1-8, Feb. 2021.
doi:10.1007/s12046-021-01594-4

8. Tang, H., C. Tong, and J. X. Chen, "Differential dual-polarized filtering dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4298-4302, Aug. 2018.
doi:10.1109/TAP.2018.2836449

9. Hu, P. F., Y. M. Pan, and X. Y. Zhang, "A compact filtering dielectric resonator antenna with wide bandwidth and high gain," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3645-3651, Aug. 2016.
doi:10.1109/TAP.2016.2565733

10. Gao, Y., Y. C. Jiao, and Z. B. Weng, "A filtering dielectric resonator antenna with high band-edge selectivity," Progress In Electromagnetics Research M, Vol. 89, 63-71, 2020.
doi:10.2528/PIERM19112703

11. Liu, Y. T., K. W. Leung, and J. Ren, "Linearly and circularly polarized filtering dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3629-3640, Jun. 2019.
doi:10.1109/TAP.2019.2902670

12. Hu, P. F., Y. M. Pan, and K. W. Leung, "Wide-/dual-band omnidirectional filtering dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2622-2627, May 2018.
doi:10.1109/TAP.2018.2809706

13. Wang, C. Y., Z. W. Han, and H. W. Liu, "A novel single-feed filtering dielectric resonator antenna using slotline stepped-impedance resonator," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 11, 3426-3430, Nov. 2021.
doi:10.1109/TCSII.2021.3079636

14. Pan, Y. M., P. F. Hu, and K. W. Leung, "Compact single-/dual-polarized filtering dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4474-4484, Sept. 2018.
doi:10.1109/TAP.2018.2845457

15. Kumar, P., S. Dwari, and S. Singh, "Conductor backed CPW-fed dual-mode excited high gain cylindrical cavity DRA for Unmanned Aircraft Systems (UAS) or drone data-link applications at C band," IETE Technical Review, Vol. 36, No. 5, 463-474, Sept. 2019.
doi:10.1080/02564602.2018.1503568

16. Ghosh, B., Y. M. M. Antar, and A. Petosa, "CPW feed to rectangular DRA," Microwave and Optical Technology Letters, Vol. 45, No. 3, 210-216, May 2005.
doi:10.1002/mop.20772

17. Ballav, S. and S. K. Parui, "A wideband dielectric resonator antenna array using air-bridgeless coplanar waveguide power divider," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21858, May 2019.
doi:10.1002/mmce.21858

18. Messaoudene, I., T. A. Denidni, and A. Benghalia, "A hybrid integrated ultra-wideband/dual- band antenna with high isolation," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 341-346, Mar. 2016.
doi:10.1017/S1759078715000033

19. Masood, R. and S. A. Mohsin, "Optimization of the S-parameter response of a coplanar waveguide series short stub for broadband applications," IEEE International Conference on Communications and Electronics, 384-388, Dec. 2010.

20. Dib, N. I., L. P. B. Katehi, and G. E. Ponchak, "Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications," IEEE Transactions on Microwave theory and Techniques, Vol. 39, No. 5, 873-882, May 1991.
doi:10.1109/22.79116

21. Al Salameh, M. S., Y. M. M. Antar, and G. Seguin, "Coplanar-waveguide-fed slot-coupled rectangular dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1415-1419, Oct. 2002.
doi:10.1109/TAP.2002.802097

22. Ballav, S., G. A. Sarkar, and S. K. Parui, "High-selective filtering dielectric resonator antenna by integrating band-rejection resonators in feedline," Sādhanā, Vol. 46, No. 2, 1-8, Apr. 2021.
doi:10.1007/s12046-021-01594-4