Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-27
Extending the Absorption Frequency Band Using Twisted Configuration in the GHz Region
By
Progress In Electromagnetics Research Letters, Vol. 105, 71-78, 2022
Abstract
The electromagnetic wave perfect absorption of metamaterial is focused on by scientists currently. Conventional studies typically use a basic unit cell and then develop the entire structure in production. In this paper, we study and use a full-sized twisted metamaterial structure with the expectation that this structure will reveal outstanding advantages and possess excellent electromagnetic absorption properties. The structure of the twisted metamaterial consists of two coincident layers of cyclic lattice stacked on top of each other. When one lattice layer rotates at a specified angle relative to the other, it generates a new lattice configuration and increases the absorption of the structure. Therefore, the frequency band widens up to 6 GHz.
Citation
Pham Van Dien, Pham Van Hai, Vu Minh Tu, Nguyen Thi Thuy, Do Hoang Tung, Pham Van Vinh, and Tran Manh Cuong, "Extending the Absorption Frequency Band Using Twisted Configuration in the GHz Region," Progress In Electromagnetics Research Letters, Vol. 105, 71-78, 2022.
doi:10.2528/PIERL22041205
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006, https://doi.org/10.1126/science.1125907.

2. Luican, A., G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, "Single-layer behavior and its breakdown in twisted graphene layers," Phys. Rev. Lett., Vol. 106, 126802, 2011, https://doi.org/10.1103/PhysRevLett.106.126802.

3. Veselago, V. G., "The electrodynamics of substances with negative ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968, https://doi.org/10.1070/PU1968v010n04ABEH003699.

4. Tran, M. C., T. T. Nguyen, T. H. Ho, and H. T. Do, "Creating a multiband perfect metamaterial absorber at K frequency band using defects in the structure," J. Electron. Mater., Vol. 46, 413, 2017, http://dx.doi.org/10.1007/s11664-016-4863-0.

5. Wilbert, D. S., M. P. Hokmabadi, P. Kung, and S. M. Kim, "Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers," IEEE Trans. Terahertz Sci. Technol., Vol. 3, 846, 2013, https://doi.org/10.1109/TTHZ.2013.2285311.

6. Khanna, Y. and Y. K. Awasthi, "Ultra-thin wideband polarization-insensitive metasurface absorber for aviation technology," J. Electron. Mater., Vol. 49, 6410-6416, 2020.

7. Carranza, I. E., G. James, G. John, and C. David, "Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays," IEEE J. Sel. Top. Quantum Electron., Vol. 23, 4700508, 2017, 10.1109/JSTQE.2016.2630307.

8. Fatih, O. A., A. Olcay, O. Meliksah, K. Muharrem, A. Oguzhan, U. Emin, and S. Cumali, "Enhancement of image quality by using metamaterial inspired energy harvester," Phys. Lett. A, Vol. 384, No. 1, 126041, 2020, https://doi.org/10.1016/j.physleta.2019.126041.

9. Lei, Z., Y. W. Rui, D. B. Guo, T. W. Hao, M. Qian, Q. C. Xiao, and J. C. Tie, "Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves," Adv. Funct. Mater., Vol. 28, 33, 2018, https://doi.org/10.1002/adfm.201802205.

10. Banerjee, S., P. Dutta, A. K. Jha, P. R. Tripati, A. Srinivasulu, B. Appasani, and C. Ravariu, "A triple band highly sensitive refractive index sensor using terahertz metamaterial perfect absorber," Progress In Electromagnetics Research M, Vol. 107, 13-23, 2022.

11. Appasani, B., "An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures," Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021.

12. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015, https://doi.org/10.1063/1.4918289.

13. Wang, B. X., X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "Design of a four-band and polarization-insensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 2014, https://doi.org/10.1109/JPHOT.2014.2381633.

14. Ma, J.-J., W. H. Tong, K. Shi, X.-Y. Cao, and B. Gong, "A broadband metamaterial absorber using fractal tree structure," Progress In Electromagnetics Research Letters, Vol. 49, 73-78, 2014.

15. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, 19, 2012, https://doi.org/10.1007/s00339-012-6936-0.

16. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Broadband and wide-angle re ective linear polarization," Appl. Phys. Lett., Vol. 105, 181111, 2014, https://doi.org/10.1063/1.5116149.

17. Tran, S. T. and T. Q. H. Nguyen, "Defect induced co-polarization broadband metamaterial absorber," AIP Advances, Vol. 9, 055321, 2019, https://doi.org/10.1063/1.5097198.

18. He, S. and T. Chen, "Broadband THz absorbers with graphene-based anisotropic metamaterial films," IEEE Trans. Terahertz Sci. Technol., Vol. 3, 757, 2013, Doi: 10.1109/TTHZ.2013.2283370.

19. Liu, X., Q. Zhang, and X. Cui, "Ultra-broadband polarization-independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials," Plasmonics, Vol. 12, No. 4, 1137, 2017, https://doi.org/10.1007/s11468-016-0368-1.

20. Gu, S., B. Su, and X. Zhao, "Planar isotropic broadband metamaterial absorber," J. Appl. Phys., Vol. 114, 163702, 2013, https://doi.org/10.1063/1.4826911.

21. Zhang, C., Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Appl. Phys. Lett., Vol. 110, 143511, 2017, https://doi.org/10.1063/1.4979543.

22. Tang, J., Z. Xiao, K. Xu, X. Ma, and Z. Wang, "Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle," Plasmonics, Vol. 11, No. 5, 1393, 2016, https://doi.org/10.1007/s11468-016-01892.

23. Tran, M. C., H. P. Van, H. H. Tuan, T. T. Nguyen, H. T. Do, X. K. Bui, S. T. Bui, D. T. Le, T. L. Pham, and D. L. Vu, "Broadband microwave coding metamaterial absorbers," Scientific Reports, Vol. 10, 1810, 2020, https://doi.org/10.1038/s41598-020-58774-1.