Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-17
Compact Permittivity Tuning Using Reconfigurable Substrate Block for Microwave Tuning Design
By
Progress In Electromagnetics Research Letters, Vol. 105, 155-161, 2022
Abstract
In this work, a permittivity tuning method using a reconfigurable substrate block is presented. The ratio of two substrate blocks with different permittivities is proved to construct a new permittivity level. This method is validated on a microstrip line, where the theory and simulation show a good agreement with a maximal permittivity calculation difference of less than 5%. In the implementation, only two pieces of substrate blocks with high and low permittivity levels respectively are needed, and it can be utilized for future flexible microwave tuning design.
Citation
Peng Zhang, Xiong Chen, and Ming Yu, "Compact Permittivity Tuning Using Reconfigurable Substrate Block for Microwave Tuning Design," Progress In Electromagnetics Research Letters, Vol. 105, 155-161, 2022.
doi:10.2528/PIERL22042803
References

1. Zhao, T., "Effective medium modeling and experimental characterization of multilayer dielectric with periodic inclusion," Dissertations & Theses --- Gradworks, 2015.

2. Hu, F., J. Song, and T. Kamgaing, "Modeling of multilayered media using effective medium theory," 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems, 225-228, 2010.
doi:10.1109/EPEPS.2010.5642584

3. Holloway, C. L., M. S. Sarto, and M. Johansson, "Analyzing carbon-fiber composite materials with equivalent Layer models," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 833-844, Nov. 2005.
doi:10.1109/TEMC.2005.854101

4. Bao, Y. and J. Song, "Effective medium model for multilayered anisotropic media with different orientations," Applied Computational Electromagnetics Society Journal, Vol. 32, No. 6, 2017.

5. Dahl, D., S. Müller, and C. Schuster, "Effect of layered media on the parallel plate impedance of printed circuit boards," 2014 IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS), 29-32, 2014.
doi:10.1109/EDAPS.2014.7030807

6. Castro, L. and S. Saitoh, "Fractional functions and their representations," Complex Analysis & Operator Theory, Vol. 7, No. 4, 1049-1063, 2013.
doi:10.1007/s11785-011-0154-1

7. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slot-Lines, Artech House, Dedham, 1979.

8. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheet," IEEE Transactions on Microwave Theory and Techniques, Vol. 13, No. 2, 172-185, 1965.
doi:10.1109/TMTT.1965.1125962

9. Collin, R., "Field theory of guided waves," Physics Today, 1961.

10. Verma, A., C. Fumeaux, and B. D. Bates, "Modified Getsinger's model for accurate determination of effective permittivity dispersion in multilayered microstrip lines," 2010 International Conference on Electromagnetics in Advanced Applications, 325-328, 2010.
doi:10.1109/ICEAA.2010.5651084

11. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

12. Benali, L. A., J. Terhzaz, and A. Tribak, "2D-FDTD method to estimate the complex permittivity of a multilayer dielectric materials at Ku-band frequencies," Progress In Electromagnetics Research M, Vol. 91, 155-164, 2020.
doi:10.2528/PIERM20020102

13. Liang, C. H., X. W. Wang, and X. Chen, "Inverse Joukowski mapping," Progress In Electromagnetics Research Letters, Vol. 19, 113-125, 2010.
doi:10.2528/PIERL10091305

14. Joshi, A. and R. Singhal, "Vertex-fed hexagonal antenna with low cross-polarization levels," Information and Communication Technologies and Services, Vol. 17, No. 2, 138-145, Jun. 2019.

15. Tran, X. L., J. Vesely, and F. Dvorak, "Optimization of nonuniform linear antenna array topology," Information and Communication Technologies and Services, Vol. 16, No. 3, 341-349, Sep. 2018.

16. Mishra, B. V. and R. Singh, "Gap coupled dual-band petal shape patch antenna for WLAN/WiMAX applications," Information and Communication Technologies and Services, Vol. 16, No. 2, 185-198, Jun. 2018.