Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-19
Design of High-Selective Wideband Bandpass Filter with a Notched-Band and Harmonic Suppression
By
Progress In Electromagnetics Research Letters, Vol. 105, 57-62, 2022
Abstract
A high-selective wideband bandpass filter (BPF) with a notched-band and harmonic suppression is proposed in this paper. Firstly, a uniform impedance resonator with an embedded open-circuited stub square loop is applied in the filter design. By adopting parallel-coupling structure at I/O ports, such a resonator can generate a notched-band within the passband due to the counter-phase cancellation of two dissimilar signal paths. The width of the square loop can be adjusted to select the location of the notched-band. Secondly, by introducing an L-shaped open-circuited stub to one input feed line, a transmission zero (TZ) is created. It can be used to suppress higher harmonic passband. The filter is designed and fabricated with the notched-band centered at 8.1 GHz, and two TZs are implemented at the both sides of the passband. Simulated and measured results show that the filter has a good selectivity and a wider stopband characteristic.
Citation
Jie Liu, Yun Xiu Wang, Guangyong Wei, Rui Lin Jia, and Yin Long Duan, "Design of High-Selective Wideband Bandpass Filter with a Notched-Band and Harmonic Suppression," Progress In Electromagnetics Research Letters, Vol. 105, 57-62, 2022.
doi:10.2528/PIERL22051001
References

1. Yang, G. M., R. Jin, J. Geng, X. Huang, and G. Xiao, "Ultra-wideband bandpass filter with hybrid quasi-lumped elements and defected ground structure," IET Microw. Antennas Propag., Vol. 1, No. 3, 733-736, 2007.
doi:10.1049/iet-map:20060288

2. Basit, A., M. I. Khattak, and M. Al-Hasan, "Design and analysis of a microstrip planar UWB bandpass filter with triple notch bands for WiMAX, WLAN, and X-band satellite communication systems," Progress In Electromagnetics Research M, Vol. 93, 155-164, 2020.
doi:10.2528/PIERM20042602

3. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2005.859011

4. Zhang, S. and L. Zhu, "Compact and high-selectivity microstrip bandpass filters using triple-/quad- mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 10, 522-524, 2011.
doi:10.1109/LMWC.2011.2166252

5. Zhu, L., W. Menzel, and , "Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 1, 16-18, 2003.
doi:10.1109/LMWC.2007.911975

6. Ghazali, A. N. and S. Pal, "A compact UWB filter with notched band and suppressed stopband using DGS," IETE Journal of Research, Vol. 59, No. 4, 420-423, 2013.
doi:10.4103/0377-2063.118065

7. Sengupta, A., S. Roychoudhury, and S. Das, "Design of a miniaturized multilayer tunable super wideband BPF," Progress In Electromagnetics Research C, Vol. 99, 145-156, 2020.
doi:10.2528/PIERC19112805

8. Chen, J. X., Y. L. Li, W. Qin, Y. J. Yang, and Z. H. Bao, "Compact multi-layer bandpass filter with wide stopband using selective feeding scheme," IEEE Trans. Circuits Syst. II, Vol. 65, 1009-1013, 2017.

9. Aliqab, K. and J. Hong, "UWB balanced BPF using a low-cost LCP bonded multilayer PCB technology," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 3, 1023-1029, 2019.
doi:10.1109/TMTT.2019.2892774

10. Mouavi, O., A. R. Eskandari, M. M. R. Kashani, and M. A. Shameli, "Compact UWB bandpass filter with two notched bands using SISLR and DMS structure," Progress In Electromagnetics Research M, Vol. 80, 193-201, 2019.
doi:10.2528/PIERM19021303

11. Liu, F. and M. Qun, "A new compact UWB bandpass filter with quad notched characteristics," Progress In Electromagnetics Research Letters, Vol. 88, 83-88, 2020.
doi:10.2528/PIERL19090505

12. Yang, L., W. W. Choi, K. W. Tam, and L. Zhu, "Novel wideband bandpass filter with dual notched bands using stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 27, 25-27, 2017.
doi:10.1109/LMWC.2016.2629967

13. Guo, X., Y. Xu, and W. Wang, "Miniaturized planar ultra-wideband bandpass filter with notched band," Journal of Computer and Communications, Vol. 3, No. 3, 100-105, 2015.
doi:10.4236/jcc.2015.33017

14. Wang, C.-H., Y.-S. Lin, and C. H. Chen, "Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles," IEEE MTT-S Int. Microwave Symp. Dig., 1979-1982, 2004.

15. Shbman, H. and J.-S. Hong, "Asymmetric parallel-coupled lines for notch implementation in UWB filters," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 516-518, 2007.
doi:10.1109/LMWC.2007.899314