Vol. 121
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-07-27
A New Unterminating Method for De-Embedding the Coaxial to Waveguide Transitions
By
Progress In Electromagnetics Research C, Vol. 121, 255-264, 2022
Abstract
A new unterminating method for coaxial to waveguide transitions is presented. The coaxial to waveguide transitions are modelled and the ABCD matrices of the transitions are obtained. The measured scattering parameters for the thru and short-circuit calibration standards match well the simulated scattering parameters computed from the ABCD matrices. To complete the validation of the proposed unterminating method, this method is applied to the measurement of complex relative permittivity for three different dielectric materials, by using the Nicolson-Ross-Weir (NRW) transmission/reflection method. The dielectric samples are inserted one by one into a waveguide section, which is connected between two coaxial to waveguide transitions. The two transitions are de-embedded from the measured scattering parameters of the embedded waveguide section, by using the method proposed in this paper. The values obtained for the complex relative permittivity are in good agreement with those reported by other authors, for all three dielectric materials. The results presented in this paper were obtained for a frequency band ranging from 25 to 40 GHz.
Citation
Stefan Simion , "A New Unterminating Method for De-Embedding the Coaxial to Waveguide Transitions," Progress In Electromagnetics Research C, Vol. 121, 255-264, 2022.
doi:10.2528/PIERC22053105
http://www.jpier.org/PIERC/pier.php?paper=22053105
References

1. Majewski, M. L., R. W. Rose, and J. R. Scott, "Modeling and characterization of microstrip-to-coaxial transitions," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 8, 799-805, Aug. 1981.
doi:10.1109/TMTT.1981.1130450

2. Capsalis, C., C. P. Chronopoulous, and N. K. Uzunoglu, "A rigorous analysis of a coaxial to shielded microstrip line transition," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 7, 1091-1098, Jul. 1989.
doi:10.1109/22.24553

3. Hajian, M., D. P. Tran, and L. P. Ligthart, "Modeling the transition between a coaxial line and a flat rectangular waveguide," Proc. Int. Conf. on Antennas and Propagation (ICAP'95), 269-272, Eindhoven, Netherlands, Apr. 4-7, 1995.

4. Liang, J.-F., H.-C. Chang, and K. A. Zaki, "Coaxial probe modeling in waveguides and cavities," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2172-2180, Dec. 1992.
doi:10.1109/22.179878

5. Yao, H.-W. and K. A. Zaki, "Modeling of generalized coaxial probes in rectangular waveguides," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 12, 2805-2811, Dec. 1995.
doi:10.1109/22.475638

6. Lozano-Guerrero, A. J., F. J. Clemente-Fernandez, J. Monzo-Cabrera, J. L. Pedreno-Molina, and A. Diaz-Morcillo, "Precise evaluation of coaxial to waveguide transitions by means of inverse techniques," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 1, 229-235, Jan. 2010.
doi:10.1109/TMTT.2009.2036408

7. Cho, H. and D. E. Burk, "A three-step method for the de-embedding of high-frequency S-parameter measurements," IEEE Trans. Electron Devices, Vol. 38, No. 6, 1371-1375, Jun. 1991.
doi:10.1109/16.81628

8. Ito, H. and K. Masuy, "A simple through-only de-embedding method for on-wafer S-parameter measurements up to 110 GHz," Proc. IEEE MTT-S Int. Microw. Symp. Dig., 383-386, Atlanta, GA, USA, Jun. 15-20, 2008.

9. Li, X., Y. Zhang, O. Li, T. Ren, F. Guo, H. Lu, and R. Xu, "A thru-halfthru-short de-embedding method for millimeter-wave on-wafer HBT characterization," IEEE Trans. Electron Device Lett., Vol. 38, No. 6, 720-723, Jun. 2017.
doi:10.1109/LED.2017.2693439

10. Bauer, R., P. Penfield, and Jr., "De-embedding and unterminating," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 3, 282-288, Mar. 1974.
doi:10.1109/TMTT.1974.1128212

11. Williams, D., "De-embedding and unterminating microwave fixtures with nonlinear least squares," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 6, 787-791, Jun. 1990.
doi:10.1109/22.130977

12. Rautio, J. C., "De-embedding algorithm for electromagnetics," Int. J. Microw. Millim.-Wave Computer-Aided Eng., Vol. 1, No. 3, 282-287, Mar. 1991.
doi:10.1002/mmce.4570010306

13. Amakawa, S., K. Takano, K. Katayama, T. Yoshida, and M. Fujishima, "On the choice of cascade de-embedding methods for on-wafer S-parameter measurement," Proc. IEEE Int. Symp. Radio-Frequency Integration Technol. (RFIT), 134-136, Singapore, Nov. 21-23, 2012.

14. Wang, W., R. Jin, T. S. Bird, X. Liang, and J. Geng, "De-embedding based on EM simulation and measurement: A hybrid method," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 12, 5019-5034, Dec. 2017.
doi:10.1109/TMTT.2017.2715326

15. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, Nov. 1970.
doi:10.1109/TIM.1970.4313932

16. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382

17. Jarvis, J. B., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.
doi:10.1109/22.57336

18. Boughriet, A. H., C. Legranf, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, Jan. 1997.
doi:10.1109/22.552032

19. Zechmeister, J. and J. Lacik, "Complex relative permittivity measurement of selected 3D-printed materials up to 10 GHz," Proc. Conf. Microw. Techniques (COMITE), Pardubice, Czech Republic, Apr. 16-18, 2019.

20. Reyes, N., F. Casado, V. Tapia, C. Jarufe, R. Finger, and L. Bronfman, "Complex dielectric permittivity of engineering and 3D-printing polymers at Q-band," J. Infrared, Millim. Terahertz Waves, Vol. 39, 1140-1147, 2018.
doi:10.1007/s10762-018-0528-9

21. Deffenbaugh, P. I., R. C. Rumpf, and K. H. Church, "Broadband microwave frequency characterization of 3-D printed materials," IEEE Trans. Compon. Packaging Manuf. Technol., Vol. 3, No. 12, 2147-2155, Dec. 2013.
doi:10.1109/TCPMT.2013.2273306

22. Castles, F., D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, "Microwave dielectric characterization of 3D-printed BaTiO3/ABS polymer composites," Scientific Reports, Vol. 6, Art. No. 22714, 2016.
doi:10.1038/srep22714

23. MathSoft, Inc., Mathcad --- User's Guide,.

24. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.

25. Riddle, B., J. B. Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 727-733, Mar. 2003.
doi:10.1109/TMTT.2003.808730

26. Felicio, J. M., C. A. Fernandes, and J. R. Costa, "Complex permittivity and anisotropy measurement of 3D-printed PLA at microwaves and millimeter-waves," Proc. IEEE Int. Conf. on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, Croatia, Sept. 19-21, 2016.

27. Elsallal, M. W., J. Hood, I. McMichael, and T. Busbee, "3D printed material characterization for complex phased arrays and metamaterials," Microw. J., Vol. 59, No. 10, 20-34, 2016.

28. Rajab, K. Z., K. F. Fuh, R. Mittra, and M. Lanagan, "Dielectric property measurement using a resonant nonradiative dielectric waveguide structure," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 2, 104-106.
doi:10.1109/LMWC.2004.842845

29. Suzuki, H. and T. Kamijo, "Millimeter-wave measurement of complex permittivity by perturbation method using open resonator," IEEE Trans. Instrum. Meas., Vol. 57, No. 12, 2868-2873, Dec. 2008.
doi:10.1109/TIM.2008.926448