1. Majewski, M. L., R. W. Rose, and J. R. Scott, "Modeling and characterization of microstrip-to-coaxial transitions," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 8, 799-805, Aug. 1981.
doi:10.1109/TMTT.1981.1130450 Google Scholar
2. Capsalis, C., C. P. Chronopoulous, and N. K. Uzunoglu, "A rigorous analysis of a coaxial to shielded microstrip line transition," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 7, 1091-1098, Jul. 1989.
doi:10.1109/22.24553 Google Scholar
3. Hajian, M., D. P. Tran, and L. P. Ligthart, "Modeling the transition between a coaxial line and a flat rectangular waveguide," Proc. Int. Conf. on Antennas and Propagation (ICAP'95), 269-272, Eindhoven, Netherlands, Apr. 4-7, 1995. Google Scholar
4. Liang, J.-F., H.-C. Chang, and K. A. Zaki, "Coaxial probe modeling in waveguides and cavities," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2172-2180, Dec. 1992.
doi:10.1109/22.179878 Google Scholar
5. Yao, H.-W. and K. A. Zaki, "Modeling of generalized coaxial probes in rectangular waveguides," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 12, 2805-2811, Dec. 1995.
doi:10.1109/22.475638 Google Scholar
6. Lozano-Guerrero, A. J., F. J. Clemente-Fernandez, J. Monzo-Cabrera, J. L. Pedreno-Molina, and A. Diaz-Morcillo, "Precise evaluation of coaxial to waveguide transitions by means of inverse techniques," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 1, 229-235, Jan. 2010.
doi:10.1109/TMTT.2009.2036408 Google Scholar
7. Cho, H. and D. E. Burk, "A three-step method for the de-embedding of high-frequency S-parameter measurements," IEEE Trans. Electron Devices, Vol. 38, No. 6, 1371-1375, Jun. 1991.
doi:10.1109/16.81628 Google Scholar
8. Ito, H. and K. Masuy, "A simple through-only de-embedding method for on-wafer S-parameter measurements up to 110 GHz," Proc. IEEE MTT-S Int. Microw. Symp. Dig., 383-386, Atlanta, GA, USA, Jun. 15-20, 2008. Google Scholar
9. Li, X., Y. Zhang, O. Li, T. Ren, F. Guo, H. Lu, and R. Xu, "A thru-halfthru-short de-embedding method for millimeter-wave on-wafer HBT characterization," IEEE Trans. Electron Device Lett., Vol. 38, No. 6, 720-723, Jun. 2017.
doi:10.1109/LED.2017.2693439 Google Scholar
10. Bauer, R., P. Penfield, and Jr., "De-embedding and unterminating," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 3, 282-288, Mar. 1974.
doi:10.1109/TMTT.1974.1128212 Google Scholar
11. Williams, D., "De-embedding and unterminating microwave fixtures with nonlinear least squares," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 6, 787-791, Jun. 1990.
doi:10.1109/22.130977 Google Scholar
12. Rautio, J. C., "De-embedding algorithm for electromagnetics," Int. J. Microw. Millim.-Wave Computer-Aided Eng., Vol. 1, No. 3, 282-287, Mar. 1991.
doi:10.1002/mmce.4570010306 Google Scholar
13. Amakawa, S., K. Takano, K. Katayama, T. Yoshida, and M. Fujishima, "On the choice of cascade de-embedding methods for on-wafer S-parameter measurement," Proc. IEEE Int. Symp. Radio-Frequency Integration Technol. (RFIT), 134-136, Singapore, Nov. 21-23, 2012. Google Scholar
14. Wang, W., R. Jin, T. S. Bird, X. Liang, and J. Geng, "De-embedding based on EM simulation and measurement: A hybrid method," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 12, 5019-5034, Dec. 2017.
doi:10.1109/TMTT.2017.2715326 Google Scholar
15. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, Nov. 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
16. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
17. Jarvis, J. B., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.
doi:10.1109/22.57336 Google Scholar
18. Boughriet, A. H., C. Legranf, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, Jan. 1997.
doi:10.1109/22.552032 Google Scholar
19. Zechmeister, J. and J. Lacik, "Complex relative permittivity measurement of selected 3D-printed materials up to 10 GHz," Proc. Conf. Microw. Techniques (COMITE), Pardubice, Czech Republic, Apr. 16-18, 2019. Google Scholar
20. Reyes, N., F. Casado, V. Tapia, C. Jarufe, R. Finger, and L. Bronfman, "Complex dielectric permittivity of engineering and 3D-printing polymers at Q-band," J. Infrared, Millim. Terahertz Waves, Vol. 39, 1140-1147, 2018.
doi:10.1007/s10762-018-0528-9 Google Scholar
21. Deffenbaugh, P. I., R. C. Rumpf, and K. H. Church, "Broadband microwave frequency characterization of 3-D printed materials," IEEE Trans. Compon. Packaging Manuf. Technol., Vol. 3, No. 12, 2147-2155, Dec. 2013.
doi:10.1109/TCPMT.2013.2273306 Google Scholar
22. Castles, F., D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, "Microwave dielectric characterization of 3D-printed BaTiO3/ABS polymer composites," Scientific Reports, Vol. 6, Art. No. 22714, 2016.
doi:10.1038/srep22714 Google Scholar
23. MathSoft, Inc., , Mathcad --- User's Guide.
24. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.
25. Riddle, B., J. B. Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 727-733, Mar. 2003.
doi:10.1109/TMTT.2003.808730 Google Scholar
26. Felicio, J. M., C. A. Fernandes, and J. R. Costa, "Complex permittivity and anisotropy measurement of 3D-printed PLA at microwaves and millimeter-waves," Proc. IEEE Int. Conf. on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, Croatia, Sept. 19-21, 2016. Google Scholar
27. Elsallal, M. W., J. Hood, I. McMichael, and T. Busbee, "3D printed material characterization for complex phased arrays and metamaterials," Microw. J., Vol. 59, No. 10, 20-34, 2016. Google Scholar
28. Rajab, K. Z., K. F. Fuh, R. Mittra, and M. Lanagan, "Dielectric property measurement using a resonant nonradiative dielectric waveguide structure," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 2, 104-106.
doi:10.1109/LMWC.2004.842845 Google Scholar
29. Suzuki, H. and T. Kamijo, "Millimeter-wave measurement of complex permittivity by perturbation method using open resonator," IEEE Trans. Instrum. Meas., Vol. 57, No. 12, 2868-2873, Dec. 2008.
doi:10.1109/TIM.2008.926448 Google Scholar