Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-13
A Modified Magnitude-Selective Affine Function-Based Behavioral Digital Predistortion for Power Amplifiers in MIMO Systems
By
Progress In Electromagnetics Research Letters, Vol. 106, 111-119, 2022
Abstract
In this paper, a modified magnitude-selective affine function-based behavioral model is proposed for the linearization of power amplifiers in multiple-input multiple-output (MIMO) systems. In this model, high-order polynomials in the crossover memory polynomial (COMPM) are replaced by magnitude-selective affine functions to compensate for the crosstalk and nonlinear distortion, leading to a highly efficient hardware implementation. The performance of the model is validated using two 3-carrier long-term evolution (LTE) signals of 20 MHz bandwidth. Experimental results show that the proposed model can achieve nearly the same adjacent channel power ratio (ACPR) and normalized mean square error (NMSE) as COMPM with about 70% reduction of hardware complexity.
Citation
Haopu Shen, Cuiping Yu, Ke Tang, and Yuan'an Liu, "A Modified Magnitude-Selective Affine Function-Based Behavioral Digital Predistortion for Power Amplifiers in MIMO Systems," Progress In Electromagnetics Research Letters, Vol. 106, 111-119, 2022.
doi:10.2528/PIERL22060208
References

1. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, Feb. 2014.
doi:10.1109/MCOM.2014.6736761

2. Palaskas, Y., et al. "A 5-GHz 108-Mb/s 2 × 2 MIMO transceiver RFIC with fully integrated 20.5-dBm power P1 dB amplifiers in 90-nm CMOS," IEEE J. Solid-State Circuits, Vol. 41, No. 12, 2746-2756, Dec. 2006.
doi:10.1109/JSSC.2006.884795

3. Ding, L., et al. "A robust digital baseband predistorter constructed using memory polynomials," IEEE Transactions on Communications, Vol. 52, No. 1, 159-165, Jan. 2004.
doi:10.1109/TCOMM.2003.822188

4. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1119-1128, May 2009.
doi:10.1109/TMTT.2009.2017258

5. Saffar, D., N. Boulejfen, F. M. Ghannouchi, A. Gharsallah, and M. Helaoui, "Behavioral modeling of MIMO nonlinear systems with multivariable polynomials," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 11, 2994-3003, Nov. 2011.
doi:10.1109/TMTT.2011.2166977

6. Abdelhafiz, A., L. Behjat, F. M. Ghannouchi, M. Helaoui, and O. Hammi, "A high-performance complexity reduced behavioral model and digital predistorter for MIMO systems with crosstalk," IEEE Transactions on Communications, Vol. 64, No. 5, 1996-2004, May 2016.
doi:10.1109/TCOMM.2016.2545654

7. Jaraut, P., M. Rawat, and F. M. Ghannouchi, "Curtailed digital predistortion model for crosstalk in MIMO transmitters," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 2018.

8. Hausmair, K., P. N. Landin, U. Gustavsson, C. Fager, and T. Eriksson, "Digital predistortion for multi-antenna transmitters affected by antenna crosstalk," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1524-1535, Mar. 2018.
doi:10.1109/TMTT.2017.2748948

9. Li, Y., W. Cao, and A. Zhu, "Instantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 11, 5000-5010, Nov. 2018.

10. Chen, L., W. Chen, F. M. Ghannouchi, and Z. Feng, "2-D magnitude-selective affine function-based digital predistortion for concurrent dual-band terminal power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4209-4222, Sept. 2021.
doi:10.1109/TMTT.2021.3076184