Vol. 107
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-13
Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network
By
Progress In Electromagnetics Research Letters, Vol. 107, 27-36, 2022
Abstract
The design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations. The scaling procedure of radial stubs is also proposed. The design procedure was verified experimentally for exemplary balun with radial stub.
Citation
Wlodzimierz Zieniutycz, and Lukasz Sorokosz, "Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network," Progress In Electromagnetics Research Letters, Vol. 107, 27-36, 2022.
doi:10.2528/PIERL22060603
References

1. Koziel, S., J. W. Bandler, and W. Madsen, "A space mapping framework for engineering optimization: Theory and implementation," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894

2. Koziel, S., S. Ogurtsov, W. Zieniutycz, and A. Bekasiewicz, "Design of a planar UWB dipole antenna with an integrated balun using surrogate-based optimization," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 366-369, 2015.
doi:10.1109/LAWP.2014.2363932

3. Zhang, Q. J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for rf and microwave design --- From theory to practice," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179

4. Cao, Y., S. Reitzinger, and Q. J. Zhang, "Simple and efficient high-dimensional parametric modeling for microwave cavity filters using modular neural network," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 258-260, 2011.
doi:10.1109/LMWC.2011.2127465

5. Gibbings, J. C., Dimensional Analysis, Springer-Verlag, Londyn, UK, 2011.
doi:10.1007/978-1-84996-317-6

6. Hart, G. W., Multidimensional Analysis, Springer-Verlag, Nowy Jork, USA, 1995.
doi:10.1007/978-1-4612-4208-6

7. Sorokosz, L. and W. Zieniutycz, "Electromagnetic modeling of microstrip elements aided with artificial neural network," 2020 Baltic URSI Symposium (URSI), 85-88, 2020.
doi:10.23919/URSI48707.2020.9254029

8. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 1998.

9. Wadell, B. C., Transmission Line Design Handbook, Artech House, Boston, USA, 1991.

10. Sorokosz, L., "Microwave baluns design with use of electromagnetic modeling and the aid of artificial neural networks,", PhD Dissertation, Gdansk University of Technology, 2016 (in Polish).

11. Gunel, T. and S. Kent, "Numerical modeling of microwave radial stub," Journal of Microwave Power and Electromagnetic Energy, Vol. 32, No. 4, 246-250, 1997.
doi:10.1080/08327823.1997.11688349

12. Suh, Y. and K. Chang, "A wideband coplanar stripline to microstrip transition," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 28-29, 2001.
doi:10.1109/7260.905958

13. Beachkofski, B. K. and R. V. Grandhi, "Improved distributed hypercube sampling," 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 22-25, Denver, USA, Apr. 2002.

14. Sorokosz, L. and W. Zieniutycz, "Estimation of a single balun parameters on the base of back-to-back measurements," 21st Int. Conf. on Microwave, Radar and Wireless Communications (MIKON), 2016.