Vol. 123
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-26
Fast Predictive Switching Table-Based Model Predictive Torque Control for PMSM
By
Progress In Electromagnetics Research C, Vol. 123, 135-150, 2022
Abstract
To reduce the calculation time of traditional model predictive torque control (MPTC), lower torque ripple, and improve the dynamic characteristics of predictive control, a model predictive torque control strategy applied in permanent magnet synchronous motor (PMSM) based on fast predictive switching table is proposed. This paper presents the 12-sector division method first. Then, based on sector division MPTC, a fast predictive switching table is proposed to reduce the 14 candidate voltage vectors of the sector division MPTC to 5. In addition, the the Proportional Integral (PI)-based adjustable weight coefficient is designed, so that the two physical quantities in the cost function have different weights under different working conditions, which improves the dynamic response of the system. As the experiment shows, PMSM uses the control strategy of this paper to output smaller torque steady-state fluctuation and faster dynamic response.
Citation
Cheng Zhang, Zichen Xiong, Yang Zhang, Hao Xie, and Pengcheng Zhang, "Fast Predictive Switching Table-Based Model Predictive Torque Control for PMSM," Progress In Electromagnetics Research C, Vol. 123, 135-150, 2022.
doi:10.2528/PIERC22060904
References

1. Kiselev, A., G. R. Catuogno, A. Kuznietsov, and R. Leidhold, "Finite-control-set MPC for open-phase fault-tolerant control of PM synchronous motor drives," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4444-4452, June 2020.
doi:10.1109/TIE.2019.2931285

2. Niu, S., Y. Luo, W. Fu, and X. Zhang, "Robust model predictive control for a three-phase PMSM motor with improved control precision," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 838-849, January 2021.
doi:10.1109/TIE.2020.3013753

3. Gong, C., Y. Hu, J. Gao, Y. Wang, and L. Yan, "An better delay-suppressed sliding-mode observer for sensor-controlled PMSM," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5913-5923, July 2020.
doi:10.1109/TIE.2019.2952824

4. Zhong, L., M. F. Rahman, W. Y. Hu, and K. W. Lim, "Analysis of direct torque control in permanent magnet synchronous motor drives," IEEE Transactions on Power Electronics, Vol. 12, No. 3, 528-536, May 1997.
doi:10.1109/63.575680

5. Carlet, P. G., A. Favato, S. Bolognani, and F. Dörfler, "Data-driven continuous-set predictive current control for synchronous motor drives," IEEE Transactions on Power Electronics, Vol. 37, No. 6, 6637-6646, June 2022.
doi:10.1109/TPEL.2022.3142244

6. Yin, Z., Q. Hou, Y. Zhang, and D. Yuan, "Sensorless finite control set model predictive speed control of induction motor using adaptive full-order observer," 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 364-369, 2021.
doi:10.1109/PRECEDE51386.2021.9680967

7. Ahmed, A. A., B. K. Koh, and Y. I. Lee, "A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors," IEEE Transactions on Industrial Informatics, Vol. 14, No. 4, 1334-1346, April 2018.
doi:10.1109/TII.2017.2758393

8. Gao, J., C. Gong, W. Li, and J. Liu, "Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5816-5819, July 2020.
doi:10.1109/TIE.2019.2934060

9. Zhou, Z., C. Xia, Y. Yan, Z. Wang, and T. Shi, "Torque ripple minimization of predictive torque control for PMSM with extended control set," IEEE Transactions on Industrial Electronics, Vol. 64, No. 9, 6930-6939, September 2017.
doi:10.1109/TIE.2017.2686320

10. Dan, H., P. Zeng, W. Xiong, M. Wen, M. Su, and M. Rivera, "Model predictive control-based direct torque control for matrix converter-fed induction motor with reduced torque ripple," CES Transactions on Electrical Machines and Systems, Vol. 5, No. 2, 90-99, June 2021.
doi:10.30941/CESTEMS.2021.00012

11. Xu, Y. Y., Q. Qing, Y. Z. Lei, B. C. Zhang, and Y. Y. Li, "Improved duty cycle model predictive torque control method for permanent magnet synchronous motor," Electric Drive, Vol. 47, No. 05, 14-17+44, 2017.

12. Zhang, B. C., Y. Y. Xu, and Q. Zhou, "Based on generalized two-vector model predictive current control for PMSM," Electric Drive, Vol. 47, No. 03, 17-20, 2017.

13. Xu, Y. Y., J. B. Wang, B. C. Zhang, and Q. Zhou, "Three vector model predictive current control for permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 33, No. 05, 980-988, 2018.

14. Wang, Z., X. Zhang, and Y. Guo, "Three-vector predictive current control for interior permanent magnet synchronous motor," 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 443-448, 2021.
doi:10.1109/PRECEDE51386.2021.9680998

15. Xiao, Q., Z. Li, B. Luo, T. Wang, D. Wen, and Y. Zhang, "Improved three vector model predictive torque control of PMSM," Progress In Electromagnetics Research M, Vol. 109, 217-229, 2022.
doi:10.2528/PIERM21120403

16. Gao, J., C. Gong, W. Li, and J. Liu, "Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5816-5819, July 2020.
doi:10.1109/TIE.2019.2934060

17. Sun, X., T. Li, Z. Zhu, G. Lei, Y. Guo, and J. Zhu, "Speed sensorless model predictive current control based on finite position set for PMSHM drives," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2743-2752, December 2021.
doi:10.1109/TTE.2021.3081436

18. Sun, X., Y. Zhang, G. Lei, Y. Guo, and J. Zhu, "An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs," IEEE/ASME Transactions on Mechatronics, Vol. 27, No. 2, 690-700, April 2022.
doi:10.1109/TMECH.2021.3068973

19. Kim, S., J. Park, J. Bae, K. Cho, and D.-H. Lee, "An advanced multiple predictive direct torque control of PMSM using PWM and the 12 sectors," 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), 27-32, 2019.
doi:10.1109/IEA.2019.8715084

20. Kim, S. J., J. Park, and D.-H. Lee, "A predictive DTC-PWM using 12 vectors for permanent magnet synchronous motor," 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 --- ECCE Asia), 2498-2504, 2019.
doi:10.23919/ICPE2019-ECCEAsia42246.2019.8797220

21. Sun, X., T. Li, M. Yao, G. Lei, Y. Guo, and J. Zhu, "Improved finite-control-set model predictive control with virtual vectors for PMSHM drives," IEEE Transactions on Energy Conversion, doi: 10.1109/TEC.2021.3138905.

22. Kim, H., J. Han, Y.-I. Lee, J.-H. Song, and K.-B. Lee, "Torque predictive control of permanent-magnet synchronous motor using duty ratio prediction," 2013 IEEE International Symposium on Industrial Electronics, 1-5, 2013.

23. Li, X., Z. Xue, L. Zhang, and W. Hua, "A low-complexity three-vector-based model predictive torque control for SPMSM," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 13002-13012, November 2021.
doi:10.1109/TPEL.2021.3079147

24. Tian, C. and Y. W. Hu, "Research on the theory and control scheme of direct torque control system of permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 1, 7-11, 2002.